Page 19 - OR-1-2
P. 19

cause autosomal-dominant parkinsonism with pleomorphic   mitochondria  and  activates  latent  Parkin  for  mitophagy.
                pathology. Neuron. 2004;44(4):601-607.           J Cell Biol. 2010;189(2):211-221.
                doi: 10.1016/j.neuron.2004.11.005                doi: 10.1083/jcb.200910140
            27.  Cherian A, Divya KP, Vijayaraghavan A. Parkinson’s   38.  Brown SJ, Boussaad I, Jarazo J,  et al.  PINK1 deficiency
                disease  -  genetic cause.  Curr Opin Neurol. 2023;36(4):   impairs adult neurogenesis of dopaminergic neurons. Sci
                292-301.                                         Rep. 2021;11(1):6617.
                doi: 10.1097/WCO.0000000000001167                doi: 10.1038/s41598-021-84278-7
            28.  Kim H, Park HJ, Choi H, et al. Modeling G2019S-LRRK2   39.  Eldeeb MA, Bayne AN, Fallahi A, et al. Tom20 gates PINK1
                sporadic Parkinson’s disease in 3D midbrain organoids. Stem   activity and mediates its tethering of the TOM and TIM23
                Cell Reports. 2019;12(3):518-531.                translocases upon mitochondrial stress. Proc Natl Acad Sci U
                                                                 S A. 2024;121(10):e2313540121.
                doi: 10.1016/j.stemcr.2019.01.020
                                                                 doi: 10.1073/pnas.2313540121
            29.  Zagare A, Barmpa K, Smajic S,  et  al. Midbrain organoids
                mimic early embryonic neurodevelopment and recapitulate   40.  Kano M, Takanashi M, Oyama G, et al. Reduced astrocytic
                LRRK2-p.Gly2019Ser-associated gene expression. Am J Hum   reactivity in human brains and midbrain organoids with
                Genet. 2022;109(2):311-327.                      PRKN mutations. NPJ Parkinsons Dis. 2020;6(1):33.
                doi: 10.1016/j.ajhg.2021.12.009                  doi: 10.1038/s41531-020-00137-8
            30.  Zhou ZD, Saw WT, Ho PG,  et al. The role of tyrosine   41.  Bus C, Zizmare L, Feldkaemper M,  et al. Human
                hydroxylase-dopamine pathway in Parkinson’s disease   dopaminergic neurons lacking PINK1 exhibit disrupted
                pathogenesis. Cell Mol Life Sci. 2022;79(12):599.  dopamine  metabolism  related  to  vitamin  B6  co-factors.
                                                                 iScience. 2020;23(12):101797.
                doi: 10.1007/s00018-022-04574-x
                                                                 doi: 10.1016/j.isci.2020.101797
            31.  Su CJ, Feng Y, Liu TT,  et al.  Thioredoxin-interacting
                protein induced α-synuclein accumulation via inhibition of   42.  Ahfeldt T, Ordureau A, Bell C, et al. Pathogenic pathways
                autophagic flux: Implications for Parkinson’s disease.  CNS   in early-onset autosomal recessive Parkinson’s disease
                Neurosci Ther. 2017;23(9):717-723.               discovered using isogenic human dopaminergic neurons.
                                                                 Stem Cell Reports. 2020;14(1):75-90.
                doi: 10.1111/cns.12721
                                                                 doi: 10.1016/j.stemcr.2019.12.005
            32.  Foliaki ST, Schwarz B, Groveman BR,  et  al. Neuronal
                excitatory-to-inhibitory balance is altered in cerebral   43.  Olgiati S, Quadri M, Fang M,  et al. DNAJC6 mutations
                organoid models of genetic neurological diseases. Mol Brain.   associated with early-onset Parkinson’s disease. Ann Neurol.
                2021;14(1):156.                                  2016;79(2):244-256.
                doi: 10.1186/s13041-021-00864-w                  doi: 10.1002/ana.24553
            33.  Ohtonen S, Giudice L, Jantti H, et al. Human iPSC-derived   44.  Edvardson S, Cinnamon Y, Ta-Shma A, et al. A deleterious
                microglia carrying the LRRK2-G2019S mutation show   mutation in DNAJC6 encoding the neuronal-specific
                a Parkinson’s disease related transcriptional profile and   clathrin-uncoating co-chaperone auxilin, is associated with
                function. Sci Rep. 2023;13(1):22118.             juvenile parkinsonism. PLoS One. 2012;7(5):e36458.
                doi: 10.1038/s41598-023-49294-9                  doi: 10.1371/journal.pone.0036458
            34.  Valente EM, Abou-Sleiman PM, Caputo V, et al. Hereditary   45.  Wulansari N, Darsono WH, Woo HJ, et al. Neurodevelopmental
                early-onset Parkinson’s disease caused by mutations in   defects and neurodegenerative phenotypes in human brain
                PINK1. Science. 2004;304(5674):1158-1160.        organoids carrying Parkinson’s disease-linked dnajc6
                                                                 mutations. Sci Adv. 2021;7(8):eabb1540.
                doi: 10.1126/science.1096284
                                                                 doi: 10.1126/sciadv.abb1540
            35.  Lucking CB, Durr A, Bonifati V, et al. Association between
                early-onset Parkinson’s disease and mutations in the parkin   46.  Abela L, Gianfrancesco L, Tagliatti E, et al. Neurodevelopmental
                gene. N Engl J Med. 2000;342(21):1560-1567.      and synaptic defects in DNAJC6 Parkinsonism, amenable to
                                                                 gene therapy. Brain. 2024;147(6):2023-2037.
                doi: 10.1056/NEJM200005253422103
                                                                 doi: 10.1093/brain/awae020
            36.  Narendra D, Tanaka A, Suen DF, Youle RJ. Parkin is recruited
                selectively to impaired mitochondria and promotes their   47.  Bonifati V, Rizzu P, Van Baren MJ, et al. Mutations in the
                autophagy. J Cell Biol. 2008;183(5):795-803.     DJ-1  gene  associated  with  autosomal  recessive  early-onset
                                                                 Parkinsonism. Science. 2003;299(5604):256-259.
                doi: 10.1083/jcb.200809125
                                                                 doi: 10.1126/science.1077209
            37.  Matsuda N, Sato S, Shiba K,  et al. PINK1 stabilized by
                mitochondrial depolarization  recruits  parkin  to damaged   48.  Morrone Parfitt G, Coccia E, Goldman C, et al. Disruption


            Volume 1 Issue 2 (2025)                         10                           doi: 10.36922/OR025040006
   14   15   16   17   18   19   20   21   22   23   24