Page 21 - OR-1-2
P. 21

phenotypes in patient neuronal cultures and brain organoids   81.  Zheng X, Han D, Liu W, et al. Human iPSC-derived midbrain
                improved by 2-hydroxypropyl-β-cyclodextrin treatment.   organoids  functionally  integrate  into  striatum  circuits  and
                Mov Disord. 2022;37(1):80-94.                    restore motor  function in  a mouse model  of Parkinson’s
                                                                 disease. Theranostics. 2023;13(8):2673-2692.
                doi: 10.1002/mds.28810
                                                                 doi: 10.7150/thno.80271
            71.  Sai M, Hank EC, Tai HM,  et al. Development of nurr1
                agonists from amodiaquine by scaffold hopping and   82.  Fu CL, Jiang X, Dong BC, Li D, She XY, Yao J. Protocol
                fragment growing. Commun Chem. 2024;7(1):149.    for transplantation of cells derived from human midbrain
                                                                 organoids into a Parkinson’s disease mouse model to restore
                doi: 10.1038/s42004-024-01224-0
                                                                 motor function. STAR Protoc. 2024;5(3):103251.
            72.  Jin Y, Li F, Li Z, et al. Modeling lewy body disease with SNCA
                triplication iPSC-derived cortical organoids and identifying      doi: 10.1016/j.xpro.2024.103251
                therapeutic drugs. Sci Adv. 2024;10(37):eadk3700.  83.  Fu CL, Dong BC, Jiang X, Li D, Yao J. A  cell therapy
                                                                 approach based on iPSC-derived midbrain organoids for the
                doi: 10.1126/sciadv.adk3700
                                                                 restoration of motor function in a Parkinson’s disease mouse
            73.  Quadrato G, Nguyen T, Macosko EZ, et al. Cell diversity and   model. Heliyon. 2024;10(2):e24234.
                network dynamics in photosensitive human brain organoids.
                Nature. 2017;545(7652):48-53.                    doi: 10.1016/j.heliyon.2024.e24234
                                                              84.  Daadi  MM,  Grueter  BA,  Malenka  RC,  Redmond  DE  Jr.,
                doi: 10.1038/nature22047
                                                                 Steinberg GK. Dopaminergic neurons from midbrain-
            74.  Pollen AA, Bhaduri A, Andrews MG,  et al.  Establishing   specified human embryonic stem cell-derived neural stem
                cerebral  organoids  as  models  of  human-specific  brain   cells engrafted in a monkey model of Parkinson’s disease.
                evolution. Cell. 2019;176(4):743-756 e17.        PLoS One. 2012;7(7):e41120.
                doi: 10.1016/j.cell.2019.01.017                  doi: 10.1371/journal.pone.0041120
            75.  Brancati  G,  Treutlein  B,  Camp  JG.  Resolving  85.  Nam YR, Kang M, Kim M,  et al. Preparation of human
                neurodevelopmental and vision disorders using organoid   astrocytes with potent therapeutic functions from human
                single-cell multi-omics. Neuron. 2020;107(6):1000-1013.  pluripotent stem cells using ventral midbrain patterning.
                doi: 10.1016/j.neuron.2020.09.001                J Adv Res. 2024;69:181-196.
            76.  Phan N, Hong JJ, Tofig B, et al. A simple high-throughput      doi: 10.1016/j.jare.2024.03.012
                approach identifies actionable drug sensitivities in patient-  86.  Andrews MG, Kriegstein AR. Challenges of organoid
                derived tumor organoids. Commun Biol. 2019;2:78.  research. Annu Rev Neurosci. 2022;45:23-39.
                doi: 10.1038/s42003-019-0305-x                   doi: 10.1146/annurev-neuro-111020-090812
            77.  Zhou C, Wu Y, Wang Z, et al. Standardization of organoid   87.  Bose S, Clevers H, Shen X. Promises and challenges of
                culture in cancer research.  Cancer Med. 2023;12(13):   organoid-guided precision medicine.  Med.  2021;2(9):
                14375-14386.                                     1011-1026.
                doi: 10.1002/cam4.5943                           doi: 10.1016/j.medj.2021.08.005
            78.  Revah O, Gore F, Kelley KW, et al. Maturation and circuit   88.  Ahammed  B,  Kalangi  SK.  A  decade  of  organoid  research:
                integration of transplanted human cortical organoids.   Progress and challenges in the field of organoid technology.
                Nature. 2022;610(7931):319-326.                  ACS Omega. 2024;9(28):30087-30096.
                doi: 10.1038/s41586-022-05277-w                  doi: 10.1021/acsomega.4c03683
            79.  Westerling-Bui AD, Fast EM, Soare TW, et al. Transplanted   89.  Hong SJ, Bock M, Zhang S, An SB, Han I. Therapeutic
                organoids empower human preclinical assessment of drug   transplantation of human central nervous system organoids
                candidate for the clinic. Sci Adv. 2022;8(27):eabj5633.  for neural reconstruction. Int J Mol Sci. 2024;25(15):8540.
                doi: 10.1126/sciadv.abj5633                      doi: 10.3390/ijms25158540
            80.  Jgamadze D, Harary PM, Castellanos M,  et al.  Protocol   90.  Bellotti C, Samudyata S, Thams S, Sellgren CM, Rostami E.
                for human brain organoid transplantation into a rat   Organoids and chimeras: The hopeful fusion transforming
                visual  cortex  to  model  neural  repair.  STAR  Protoc.  2023;   traumatic brain injury research. Acta Neuropathol Commun.
                4(3):102470.                                     2024;12(1):141.
                doi: 10.1016/j.xpro.2023.102470                  doi: 10.1186/s40478-024-01845-5








            Volume 1 Issue 2 (2025)                         12                           doi: 10.36922/OR025040006
   16   17   18   19   20   21   22   23   24   25   26