Page 46 - OR-1-2
P. 46

its potential use as a scaffold for tissue engineering in      doi: 10.1002/adhm.201900979
                regenerative medicine. BioMed Res Int. 2015;2015:821279.
                                                              82.  Guo H, Mussault C, Marcellan A, Hourdet D, Sanson  N.
                doi: 10.1155/2015/821279                         Hydrogels with dual thermoresponsive mechanical
                                                                 performance. Macromol Rapid Commun. 2017;38:1700287.
            71.  Upadhyay U, Kolla S, Maredupaka S, Priya S, Srinivasulu K,
                Chelluri LK. Development of an alginate-chitosan      doi: 10.1002/marc.201700287
                biopolymer composite with dECM bioink additive for organ-  83.  Navaei A, Truong D, Heffernan J,  et  al. PNIPAAm-based
                on-a-chip articular cartilage. Sci Rep. 2024;14:11765.
                                                                 biohybrid injectable hydrogel for cardiac tissue engineering.
                doi: 10.1038/s41598-024-62656-1                  Acta Biomater. 2016;32:10-23.
            72.  Iaconisi GN, Lunetti P, Gallo N,  et  al. Hyaluronic acid:      doi: 10.1016/j.actbio.2015.12.019
                A  powerful biomolecule with wide-ranging applications-a   84.  Li X, Zhou J, Liu Z, et al. A PNIPAAm-based thermosensitive
                comprehensive review. Int J Mol Sci. 2023;24:10296.
                                                                 hydrogel containing SWCNTs for stem cell transplantation
                doi: 10.3390/ijms241210296                       in myocardial repair. Biomaterials. 2014;35:5679-5688.
            73.  Tsou YH, Khoneisser J, Huang PC, Xu X. Hydrogel as a      doi: 10.1016/j.biomaterials.2014.03.067
                bioactive material to regulate stem cell fate.  Bioact  Mater.
                2016;1(1):39-55.                              85.  Sun W, Zhang J, Qin Y, et al. A simple and efficient strategy
                                                                 for preparing a cell‐spheroid‐based Bioink. Adv Healthc
                doi: 10.1016/j.bioactmat.2016.05.001             Mater. 2022;11(15):e2200648.
            74.  Luo Y, Tan J, Zhou Y, et al. From crosslinking strategies to      doi: 10.1002/adhm.202200648
                biomedical applications of hyaluronic acid-based hydrogels:   86.  Liu K, Wiendels M, Yuan H, Ruan C, Kouwer PHJ. Cell-
                A review. Int J Biol Macromol. 2023;231:123308.
                                                                 matrix reciprocity in 3D culture models with nonlinear
                doi: 10.1016/j.ijbiomac.2023.123308              elasticity. Bioact Mater. 2022;9:316-331.
            75.  Wu S, Xu R, Duan B, Jiang P. Three-dimensional hyaluronic      doi: 10.1016/j.bioactmat.2021.08.002
                acid hydrogel-based models for in vitro human iPSC-derived   87.  Liu K, Mihaila SM, Rowan A, Oosterwijk E, Kouwer PHJ.
                npc culture and differentiation. J Mater Chem B Mater Biol   Synthetic extracellular matrices with nonlinear elasticity
                Med. 2017;5:3870-3878.
                                                                 regulate  cellular  organization.  Biomacromolecules.
                doi: 10.1039/C7TB00721C                          2019;20:826-834.
            76.  Zeltz C, Gullberg D. The integrin-collagen connection--a      doi: 10.1021/acs.biomac.8b01445
                glue for tissue repair? J Cell Sci. 2016;129(4):653-664.
                                                              88.  Maru Y, Tanaka N, Itami M, Hippo Y. Efficient use of patient-
                doi: 10.1242/jcs.180992                          derived organoids as a preclinical model for gynecologic
            77.  Randriamanantsoa S, Papargyriou A, Maurer HC,  et  al.   tumors. Gynecol Oncol. 2019;154:189-198.
                Spatiotemporal dynamics of self-organized branching in      doi: 10.1016/j.ygyno.2019.05.005
                pancreas-derived organoids. Nat Commun. 2022;13:5219.
                                                              89.  Pinto AR, Ilinykh A, Ivey MJ,  et al. Revisiting  Cardiac
                doi: 10.1038/s41467-022-32806-y                  Cellular Composition. Circ Res. 2016;118:400-409.
            78.  Sarrigiannidis SO, Rey JM, Dobre O, González-García C,      doi: 10.1161/CIRCRESAHA.115.307778
                Dalby MJ, Salmeron-Sanchez M. A  tough act to follow:
                Collagen hydrogel modifications to improve mechanical   90.  Capulli AK, MacQueen LA, Sheehy SP, Parker KK. Fibrous
                and growth factor loading capabilities.  Mater Today Bio.   scaffolds for building hearts and heart parts. Adv Drug Deliv
                2021;10:100098.                                  Rev. 2016;96:83-102.
                                                                 doi: 10.1016/j.addr.2015.11.020
                doi: 10.1016/j.mtbio.2021.100098
                                                              91.  Derrick CJ, Noël ES. The ECM as a driver of heart
            79.  Gupta AK, Coburn JM, Davis-Knowlton J, Kimmerling E,   development and repair. Development. 2021;148:dev191320.
                Kaplan DL, Oxburgh L. Scaffolding kidney organoids on silk.
                J Tissue Eng Regen Med. 2019;13:812-822.         doi: 10.1242/dev.191320
                doi: 10.1002/term.2830                        92.  Zhang YS, Arneri A, Bersini S, et al. Bioprinting 3D microfibrous
                                                                 scaffolds for engineering endothelialized myocardium and
            80.  D’souza AA, Shegokar R. Polyethylene glycol (PEG):
                A versatile polymer for pharmaceutical applications. Expert   heart-on-a-chip. Biomaterials. 2016;110:45-59.
                Opin Drug Deliv. 2016;13:1257-1275.              doi: 10.1016/j.biomaterials.2016.09.003
                doi: 10.1080/17425247.2016.1182485            93.  Lu K, Seidel T, Cao-Ehlker X,  et  al. Progressive stretch
                                                                 enhances growth and maturation of 3D stem-cell-derived
            81.  Klotz BJ,  Oosterhoff  LA, Utomo L,  et al. A  versatile
                biosynthetic hydrogel platform for engineering of tissue   myocardium. Theranostics. 2021;11:6138-6153.
                analogues. Adv Healthc Mater. 2019;8:e1900979.     doi: 10.7150/thno.54999


            Volume 1 Issue 2 (2025)                         25                                doi: 10.36922/or.8262
   41   42   43   44   45   46   47   48   49   50   51