Page 46 - OR-1-2
P. 46
its potential use as a scaffold for tissue engineering in doi: 10.1002/adhm.201900979
regenerative medicine. BioMed Res Int. 2015;2015:821279.
82. Guo H, Mussault C, Marcellan A, Hourdet D, Sanson N.
doi: 10.1155/2015/821279 Hydrogels with dual thermoresponsive mechanical
performance. Macromol Rapid Commun. 2017;38:1700287.
71. Upadhyay U, Kolla S, Maredupaka S, Priya S, Srinivasulu K,
Chelluri LK. Development of an alginate-chitosan doi: 10.1002/marc.201700287
biopolymer composite with dECM bioink additive for organ- 83. Navaei A, Truong D, Heffernan J, et al. PNIPAAm-based
on-a-chip articular cartilage. Sci Rep. 2024;14:11765.
biohybrid injectable hydrogel for cardiac tissue engineering.
doi: 10.1038/s41598-024-62656-1 Acta Biomater. 2016;32:10-23.
72. Iaconisi GN, Lunetti P, Gallo N, et al. Hyaluronic acid: doi: 10.1016/j.actbio.2015.12.019
A powerful biomolecule with wide-ranging applications-a 84. Li X, Zhou J, Liu Z, et al. A PNIPAAm-based thermosensitive
comprehensive review. Int J Mol Sci. 2023;24:10296.
hydrogel containing SWCNTs for stem cell transplantation
doi: 10.3390/ijms241210296 in myocardial repair. Biomaterials. 2014;35:5679-5688.
73. Tsou YH, Khoneisser J, Huang PC, Xu X. Hydrogel as a doi: 10.1016/j.biomaterials.2014.03.067
bioactive material to regulate stem cell fate. Bioact Mater.
2016;1(1):39-55. 85. Sun W, Zhang J, Qin Y, et al. A simple and efficient strategy
for preparing a cell‐spheroid‐based Bioink. Adv Healthc
doi: 10.1016/j.bioactmat.2016.05.001 Mater. 2022;11(15):e2200648.
74. Luo Y, Tan J, Zhou Y, et al. From crosslinking strategies to doi: 10.1002/adhm.202200648
biomedical applications of hyaluronic acid-based hydrogels: 86. Liu K, Wiendels M, Yuan H, Ruan C, Kouwer PHJ. Cell-
A review. Int J Biol Macromol. 2023;231:123308.
matrix reciprocity in 3D culture models with nonlinear
doi: 10.1016/j.ijbiomac.2023.123308 elasticity. Bioact Mater. 2022;9:316-331.
75. Wu S, Xu R, Duan B, Jiang P. Three-dimensional hyaluronic doi: 10.1016/j.bioactmat.2021.08.002
acid hydrogel-based models for in vitro human iPSC-derived 87. Liu K, Mihaila SM, Rowan A, Oosterwijk E, Kouwer PHJ.
npc culture and differentiation. J Mater Chem B Mater Biol Synthetic extracellular matrices with nonlinear elasticity
Med. 2017;5:3870-3878.
regulate cellular organization. Biomacromolecules.
doi: 10.1039/C7TB00721C 2019;20:826-834.
76. Zeltz C, Gullberg D. The integrin-collagen connection--a doi: 10.1021/acs.biomac.8b01445
glue for tissue repair? J Cell Sci. 2016;129(4):653-664.
88. Maru Y, Tanaka N, Itami M, Hippo Y. Efficient use of patient-
doi: 10.1242/jcs.180992 derived organoids as a preclinical model for gynecologic
77. Randriamanantsoa S, Papargyriou A, Maurer HC, et al. tumors. Gynecol Oncol. 2019;154:189-198.
Spatiotemporal dynamics of self-organized branching in doi: 10.1016/j.ygyno.2019.05.005
pancreas-derived organoids. Nat Commun. 2022;13:5219.
89. Pinto AR, Ilinykh A, Ivey MJ, et al. Revisiting Cardiac
doi: 10.1038/s41467-022-32806-y Cellular Composition. Circ Res. 2016;118:400-409.
78. Sarrigiannidis SO, Rey JM, Dobre O, González-García C, doi: 10.1161/CIRCRESAHA.115.307778
Dalby MJ, Salmeron-Sanchez M. A tough act to follow:
Collagen hydrogel modifications to improve mechanical 90. Capulli AK, MacQueen LA, Sheehy SP, Parker KK. Fibrous
and growth factor loading capabilities. Mater Today Bio. scaffolds for building hearts and heart parts. Adv Drug Deliv
2021;10:100098. Rev. 2016;96:83-102.
doi: 10.1016/j.addr.2015.11.020
doi: 10.1016/j.mtbio.2021.100098
91. Derrick CJ, Noël ES. The ECM as a driver of heart
79. Gupta AK, Coburn JM, Davis-Knowlton J, Kimmerling E, development and repair. Development. 2021;148:dev191320.
Kaplan DL, Oxburgh L. Scaffolding kidney organoids on silk.
J Tissue Eng Regen Med. 2019;13:812-822. doi: 10.1242/dev.191320
doi: 10.1002/term.2830 92. Zhang YS, Arneri A, Bersini S, et al. Bioprinting 3D microfibrous
scaffolds for engineering endothelialized myocardium and
80. D’souza AA, Shegokar R. Polyethylene glycol (PEG):
A versatile polymer for pharmaceutical applications. Expert heart-on-a-chip. Biomaterials. 2016;110:45-59.
Opin Drug Deliv. 2016;13:1257-1275. doi: 10.1016/j.biomaterials.2016.09.003
doi: 10.1080/17425247.2016.1182485 93. Lu K, Seidel T, Cao-Ehlker X, et al. Progressive stretch
enhances growth and maturation of 3D stem-cell-derived
81. Klotz BJ, Oosterhoff LA, Utomo L, et al. A versatile
biosynthetic hydrogel platform for engineering of tissue myocardium. Theranostics. 2021;11:6138-6153.
analogues. Adv Healthc Mater. 2019;8:e1900979. doi: 10.7150/thno.54999
Volume 1 Issue 2 (2025) 25 doi: 10.36922/or.8262

