Page 118 - OR-1-3
P. 118

doi: 10.1002/smll.201902971                      doi: 10.3390/cancers13164065
            63.  Ma C, Witkowski MT, Harris J, et al. Leukemia-on-a-chip:   74.  Byun CK, Abi-Samra K, Cho YK, Takayama S. Pumps for
                Dissecting  the  chemoresistance  mechanisms  in  B  cell   microfluidic cell culture.  Electrophoresis. 2014;35(2-3):
                acute lymphoblastic leukemia bone marrow niche. Sci Adv.   245-257.
                2020;6(44):eaba5536.
                                                                 doi: 10.1002/elps.201300205
                doi: 10.1126/sciadv.aba5536
                                                              75.  Elorza RI, Sorrentino S, Moroni L. Parallels between the
            64.  Chou DB, Frismantas V, Milton Y, et al. On-chip recapitulation   developing vascular and neural systems: Signaling pathways
                of clinical bone marrow toxicities and patient-specific   and future perspectives for regenerative medicine. Adv Sci
                pathophysiology. Nat Biomed Eng. 2020;4(4):394-406.  (Weinh). 2021;8(23):e2101837.
                doi: 10.1038/s41551-019-0495-z                   doi: 10.1002/advs.202101837
            65.  Souquet B, Opitz M, Vianay B, Brunet S, Théry M.   76.  Peguera B, Segarra M, Acker-Palmer A. Neurovascular
                Manufacturing a bone marrow-on-a-chip using maskless   crosstalk coordinates the central nervous system
                photolithography. Methods Mol Biol. 2021;2308:263-278.  development. Curr Opin Neurobiol. 2021;69:202-213.
                doi: 10.1007/978-1-0716-1425-9_20                doi: 10.1016/j.conb.2021.04.005
            66.  Nelson MR, Ghoshal D, Mejías JC, Rubio DF, Keith E,   77.  Liang L, Wang X, Chen D, et al. Study on the hemodynamic
                Roy K. A  multi-niche microvascularized human bone   effects of different pulsatile working modes of a rotary blood
                marrow (hBM) on-a-chip elucidates key roles of the endosteal   pump using a microfluidic platform that realizes in vitro cell
                niche in hBM physiology. Biomaterials. 2021;270:120683.  culture effectively. Lab Chip. 2024;24(9):2428-2439.
                doi: 10.1016/j.biomaterials.2021.120683          doi: 10.1039/d4lc00159a
            67.  Glaser DE, Curtis MB, Sariano PA,  et al. Organ-on-a-  78.  Chu P, Hsieh H, Chung P,  et al. Development of vessel
                chip model of vascularized human bone marrow niches.   mimicking microfluidic device for studying mechano-
                Biomaterials. 2022;280:121245.                   response of endothelial cells. iScience. 2023;26(6):106927.
                doi: 10.1016/j.biomaterials.2021.121245          doi: 10.1016/j.isci.2023.106927
            68.  Sharipol A, Lesch ML, Soto CA, Frisch BJ. Bone marrow   79.  Salimi-Afjani N, Rieben R, Obrist D. Pulsatile-flow culture:
                microenvironment-on-chip  for  culture  of  functional   A  novel system for assessing vascular-cell dynamics.  Lab
                hematopoietic stem cells.  Front Bioeng Biotechnol.   Chip. 2025;25(7):1755-1766.
                2022;10:855777.
                                                                 doi: 10.1039/d4lc00949e
                doi: 10.3389/fbioe.2022.855777
                                                              80.  Frisch BJ. The hematopoietic stem cell niche: What’s so
            69.  Isosaari L, Vuorenpaa H, Yrjanainen A, et al. Simultaneous   special about bone? Bone. 2019;119:8-12.
                induction of vasculature and neuronal network formation on
                a chip reveals a dynamic interrelationship between cell types.      doi: 10.1016/j.bone.2018.05.017
                Cell Commun Signal. 2023;21(1):132.           81.  Bhatia  SN,  Ingber  DE.  Microfluidic  organs-on-chips.  Nat
                                                                 Biotechnol. 2014;32(8):760-772.
                doi: 10.1186/s12964-023-01159-4
                                                                 doi: 10.1038/nbt.2989
            70.  Ma C, Wang H, Liu L, et al. A Bioengineered Immunocompetent
                Human Leukemia Chip for Preclinical Screening of CAR T Cell   82.  Duarte D, Hawkins ED, Lo CC. The interplay of leukemia
                Immunotherapy. Research Square [Preprint]; 2023.  cells and the bone marrow microenvironment.  Blood.
                                                                 2018;131(14):1507-1511.
                doi: 10.21203/rs.3.rs-2762929/v1
                                                                 doi: 10.1182/blood-2017-12-784132
            71.  Ji X, Bei HP, Zhong G, et al. Premetastatic niche mimicking
                bone-on-a-chip: A  microfluidic platform to study bone   83.  Zheng Y, Sun Y, Yu X, et al. Angiogenesis in liquid tumors:
                metastasis in cancer patients. Small. 2023;19:e202207606.  An  in vitro assay for leukemic-cell-induced bone marrow
                                                                 angiogenesis. Adv Healthc Mater. 2016;5(9):1014-1024.
                doi: 10.1002/smll.202207606
                                                                 doi: 10.1002/adhm.201501007
            72.  Soleymani S, Naghib SM. 3D and 4D printing hydroxyapatite-
                based scaffolds for bone tissue engineering and regeneration.   84.  Mannino RG, Santiago-Miranda AN, Pradhan P,  et al.
                Heliyon. 2023;9(9):e19363.                       3D microvascular model recapitulates the diffuse large
                                                                 B-cell lymphoma tumor microenvironment  in vitro.  Lab
                doi: 10.1016/j.heliyon.2023.e19363
                                                                 Chip. 2017;17(3):407-414.
            73.  Fischetti T, Di Pompo G, Baldini N, Avnet S, Graziani G.
                3D printing and bioprinting to model bone cancer: The role      doi: 10.1039/c6lc01204c
                of materials and nanoscale cues in directing cell behavior.   85.  Bruce A, Evans R, Mezan R,  et al. Three-dimensional
                Cancers (Basel). 2021;13(16):4065.               microfluidic tri-culture model of the bone marrow


            Volume 1 Issue 3 (2025)                         21                           doi: 10.36922/OR025200017
   113   114   115   116   117   118   119   120   121   122   123