Page 118 - OR-1-3
P. 118
doi: 10.1002/smll.201902971 doi: 10.3390/cancers13164065
63. Ma C, Witkowski MT, Harris J, et al. Leukemia-on-a-chip: 74. Byun CK, Abi-Samra K, Cho YK, Takayama S. Pumps for
Dissecting the chemoresistance mechanisms in B cell microfluidic cell culture. Electrophoresis. 2014;35(2-3):
acute lymphoblastic leukemia bone marrow niche. Sci Adv. 245-257.
2020;6(44):eaba5536.
doi: 10.1002/elps.201300205
doi: 10.1126/sciadv.aba5536
75. Elorza RI, Sorrentino S, Moroni L. Parallels between the
64. Chou DB, Frismantas V, Milton Y, et al. On-chip recapitulation developing vascular and neural systems: Signaling pathways
of clinical bone marrow toxicities and patient-specific and future perspectives for regenerative medicine. Adv Sci
pathophysiology. Nat Biomed Eng. 2020;4(4):394-406. (Weinh). 2021;8(23):e2101837.
doi: 10.1038/s41551-019-0495-z doi: 10.1002/advs.202101837
65. Souquet B, Opitz M, Vianay B, Brunet S, Théry M. 76. Peguera B, Segarra M, Acker-Palmer A. Neurovascular
Manufacturing a bone marrow-on-a-chip using maskless crosstalk coordinates the central nervous system
photolithography. Methods Mol Biol. 2021;2308:263-278. development. Curr Opin Neurobiol. 2021;69:202-213.
doi: 10.1007/978-1-0716-1425-9_20 doi: 10.1016/j.conb.2021.04.005
66. Nelson MR, Ghoshal D, Mejías JC, Rubio DF, Keith E, 77. Liang L, Wang X, Chen D, et al. Study on the hemodynamic
Roy K. A multi-niche microvascularized human bone effects of different pulsatile working modes of a rotary blood
marrow (hBM) on-a-chip elucidates key roles of the endosteal pump using a microfluidic platform that realizes in vitro cell
niche in hBM physiology. Biomaterials. 2021;270:120683. culture effectively. Lab Chip. 2024;24(9):2428-2439.
doi: 10.1016/j.biomaterials.2021.120683 doi: 10.1039/d4lc00159a
67. Glaser DE, Curtis MB, Sariano PA, et al. Organ-on-a- 78. Chu P, Hsieh H, Chung P, et al. Development of vessel
chip model of vascularized human bone marrow niches. mimicking microfluidic device for studying mechano-
Biomaterials. 2022;280:121245. response of endothelial cells. iScience. 2023;26(6):106927.
doi: 10.1016/j.biomaterials.2021.121245 doi: 10.1016/j.isci.2023.106927
68. Sharipol A, Lesch ML, Soto CA, Frisch BJ. Bone marrow 79. Salimi-Afjani N, Rieben R, Obrist D. Pulsatile-flow culture:
microenvironment-on-chip for culture of functional A novel system for assessing vascular-cell dynamics. Lab
hematopoietic stem cells. Front Bioeng Biotechnol. Chip. 2025;25(7):1755-1766.
2022;10:855777.
doi: 10.1039/d4lc00949e
doi: 10.3389/fbioe.2022.855777
80. Frisch BJ. The hematopoietic stem cell niche: What’s so
69. Isosaari L, Vuorenpaa H, Yrjanainen A, et al. Simultaneous special about bone? Bone. 2019;119:8-12.
induction of vasculature and neuronal network formation on
a chip reveals a dynamic interrelationship between cell types. doi: 10.1016/j.bone.2018.05.017
Cell Commun Signal. 2023;21(1):132. 81. Bhatia SN, Ingber DE. Microfluidic organs-on-chips. Nat
Biotechnol. 2014;32(8):760-772.
doi: 10.1186/s12964-023-01159-4
doi: 10.1038/nbt.2989
70. Ma C, Wang H, Liu L, et al. A Bioengineered Immunocompetent
Human Leukemia Chip for Preclinical Screening of CAR T Cell 82. Duarte D, Hawkins ED, Lo CC. The interplay of leukemia
Immunotherapy. Research Square [Preprint]; 2023. cells and the bone marrow microenvironment. Blood.
2018;131(14):1507-1511.
doi: 10.21203/rs.3.rs-2762929/v1
doi: 10.1182/blood-2017-12-784132
71. Ji X, Bei HP, Zhong G, et al. Premetastatic niche mimicking
bone-on-a-chip: A microfluidic platform to study bone 83. Zheng Y, Sun Y, Yu X, et al. Angiogenesis in liquid tumors:
metastasis in cancer patients. Small. 2023;19:e202207606. An in vitro assay for leukemic-cell-induced bone marrow
angiogenesis. Adv Healthc Mater. 2016;5(9):1014-1024.
doi: 10.1002/smll.202207606
doi: 10.1002/adhm.201501007
72. Soleymani S, Naghib SM. 3D and 4D printing hydroxyapatite-
based scaffolds for bone tissue engineering and regeneration. 84. Mannino RG, Santiago-Miranda AN, Pradhan P, et al.
Heliyon. 2023;9(9):e19363. 3D microvascular model recapitulates the diffuse large
B-cell lymphoma tumor microenvironment in vitro. Lab
doi: 10.1016/j.heliyon.2023.e19363
Chip. 2017;17(3):407-414.
73. Fischetti T, Di Pompo G, Baldini N, Avnet S, Graziani G.
3D printing and bioprinting to model bone cancer: The role doi: 10.1039/c6lc01204c
of materials and nanoscale cues in directing cell behavior. 85. Bruce A, Evans R, Mezan R, et al. Three-dimensional
Cancers (Basel). 2021;13(16):4065. microfluidic tri-culture model of the bone marrow
Volume 1 Issue 3 (2025) 21 doi: 10.36922/OR025200017

