Page 115 - OR-1-3
P. 115

Conflict of interest                              7.   Cekanova M, Rathore K. Animal models and therapeutic
                                                                 molecular targets of cancer: Utility and limitations. Drug Des
            Zhidao Xia is an Associate Editor of this journal, but was   Devel Ther. 2014;8:1911-1921.
            not in any way involved in the editorial and peer-review      doi: 10.2147/DDDT.S49584
            process conducted for this paper, directly or indirectly.
            Separately, other authors declared that they have no known   8.   Zushin PH, Mukherjee S, Wu JC. FDA modernization act
            competing financial interests or personal relationships that   2.0: Transitioning beyond animal models with human cells,
            could have influenced the work reported in this paper.  organoids, and AI/ML-based approaches.  J  Clin Invest.
                                                                 2023;133(21):eJCI175824.
            Author contributions                                 doi: 10.1172/JCI175824
            Conceptualization: Renshan Li, Xiongfa Ji, Jin Ke  9.   Santos Rosalem G, Gonzáles Torres LA, De Las Casas EB,
            Visualization: Renshan Li, Jiaqi Zhou                Mathias FAS, Ruiz JC, Carvalho MGR. Microfluidics
            Writing–original draft: Renshan Li                   and organ-on-a-chip technologies: A  systematic review
            Writing–review & editing: Jiaqi Zhou, Man Shu, Guoqing   of the methods used to mimic bone marrow.  PLoS One.
                                                                 2020;15(12):e0243840.
                Zhong, Zhidao Xia
                                                                 doi: 10.1371/journal.pone.0243840
            Ethics approval and consent to participate        10.  Li W, Zhou Z, Zhou X,  et al. 3D Biomimetic models to

            Not applicable.                                      reconstitute tumor microenvironment  in vitro: Spheroids,
                                                                 organoids, and tumor-on-a-chip.  Adv  Healthc  Mater.
            Consent for publication                              2023;12(18):e2202609.
            Not applicable.                                      doi: 10.1002/adhm.202202609
                                                              11.  Tang Q, Li X, Lai C, et al. Fabrication of a hydroxyapatite-
            Availability of data                                 PDMS  microfluidic  chip  for  bone-related cell culture  and
            Not applicable.                                      drug screening. Bioact Mater. 2021;6(1):169-178.
                                                                 doi: 10.1016/j.bioactmat.2020.07.016
            References
                                                              12.  Lipreri MV, Di Pompo G, Boanini E,  et al. Bone on-a-
            1.   Miller KD, Nogueira L, Devasia T, et al. Cancer treatment   chip:  A  3D  dendritic  network  in  a  screening platform  for
                and survivorship statistics, 2022.  CA Cancer J Clin.   osteocyte-targeted drugs. Biofabrication. 2023;15(4):045012.
                2022;72(5):409-436.                              doi: 10.1088/1758-5090/acee23
                doi: 10.3322/caac.21731                       13.  Chen F, Han Y, Kang Y. Bone marrow niches in the regulation
            2.   Bray F, Laversanne M, Sung H, et al. Global cancer statistics   of bone metastasis. Br J Cancer. 2021;124(12):1912-1920.
                2022: GLOBOCAN estimates of incidence and mortality      doi: 10.1038/s41416-021-01329-6
                worldwide for 36 cancers in 185 countries. CA Cancer J Clin.
                2024;74(3):229-263.                           14.  Smith JT, Chai RC. Bone niches in the regulation of tumour
                                                                 cell dormancy. J Bone Oncol. 2024;47:100621.
                doi: 10.3322/caac.21834
                                                                 doi: 10.1016/j.jbo.2024.100621
            3.   Coleman RE. Metastatic bone disease: Clinical features,
                pathophysiology and treatment strategies. Cancer Treat Rev.   15.  Yu-Lee L, Yu G, Lee YC, et al. Osteoblast-secreted factors
                2001;27(3):165-176.                              mediate dormancy of metastatic prostate cancer in the bone
                                                                 via activation of the TGFβRIII-p38MAPK-pS249/T252RB
                doi: 10.1053/ctrv.2000.0210                      pathway. Cancer Res. 2018;78(11):2911-2924.
            4.   Gomis RR, Gawrzak S. Tumor cell dormancy.  Mol Oncol.      doi: 10.1158/0008-5472.CAN-17-1051
                2017;11(1):62-78.
                                                              16.  Frisbie L, Buckanovich RJ, Coffman L. Carcinoma-
                doi: 10.1016/j.molonc.2016.09.009                associated mesenchymal stem/stromal cells: Architects of
            5.   Cackowski FC, Heath EI. Prostate cancer dormancy and   the pro-tumorigenic tumor microenvironment. Stem Cells.
                recurrence. Cancer Lett. 2022;524:103-108.       2022;40(8):705-715.
                doi: 10.1016/j.canlet.2021.09.037                doi: 10.1093/stmcls/sxac036
            6.   Hu W, Zhang L, Dong Y, Tian Z, Chen Y, Dong S. Tumour   17.  Lan T, Luo M, Wei X. Mesenchymal stem/stromal cells in
                dormancy in inflammatory microenvironment: A promising   cancer therapy. J Hematol Oncol. 2021;14(1):195.
                therapeutic strategy for cancer-related bone metastasis. Cell      doi: 10.1186/s13045-021-01208-w
                Mol Life Sci. 2020;77(24):5149-5169.
                                                              18.  Khoo WH, Ledergor G, Weiner A, et al. A niche-dependent
                doi: 10.1007/s00018-020-03572-1                  myeloid transcriptome signature defines dormant myeloma


            Volume 1 Issue 3 (2025)                         18                           doi: 10.36922/OR025200017
   110   111   112   113   114   115   116   117   118   119   120