Page 116 - OR-1-3
P. 116

cells. Blood. 2019;134(1):30-43.                 microenvironment-suppressed T cells increase osteoclast
                                                                 formation and osteolytic bone metastases in mice.  J  Bone
                doi: 10.1182/blood.2018880930
                                                                 Miner Res. 2022;37(8):1446-1463.
            19.  Axelrod HD, Valkenburg KC, Amend SR,  et al. AXL is
                a putative tumor suppressor and dormancy regulator in      doi: 10.1002/jbmr.4615
                prostate cancer. Mol Cancer Res. 2019;17(2):356-369.  30.  Barcellos-De-Souza P, Comito G, Pons-Segura C,
                                                                 et al. Mesenchymal stem cells are recruited and activated
                doi: 10.1158/1541-7786.MCR-18-0718
                                                                 into  carcinoma-associated  fibroblasts  by  prostate
            20.  Taichman RS, Patel LR, Bedenis R,  et al. GAS6 receptor   cancer microenvironment-derived TGF-β1.  Stem  Cells.
                status is associated with dormancy and bone metastatic   2016;34(10):2536-2547.
                tumor formation. PLoS One. 2013;8(4):e61873.
                                                                 doi: 10.1002/stem.2412
                doi: 10.1371/journal.pone.0061873
                                                              31.  Ferrer A, Roser CT, El-Far MH,  et al. Hypoxia-mediated
            21.  Ono M, Kosaka N, Tominaga N, et al. Exosomes from bone   changes in bone marrow microenvironment in breast cancer
                marrow mesenchymal stem cells contain a microRNA that   dormancy. Cancer Lett. 2020;488:9-17.
                promotes dormancy in metastatic breast cancer cells.  Sci      doi: 10.1016/j.canlet.2020.05.026
                Signal. 2014;7(332):ra63.
                                                              32.  Price TT, Burness ML, Sivan A, et al. Dormant breast cancer
                doi: 10.1126/scisignal.2005231                   micrometastases reside in specific bone marrow niches
            22.  Lim PK, Bliss SA, Patel SA,  et  al. Gap junction-mediated   that regulate their transit to and from bone. Sci Transl Med.
                import of microRNA from bone marrow stromal cells can   2016;8(340):340ra73.
                elicit cell cycle quiescence in breast cancer cells. Cancer Res.      doi: 10.1126/scitranslmed.aad4059
                2011;71(5):1550-1560.
                                                              33.  Braun S, Kentenich C, Janni W, et al. Lack of effect of adjuvant
                doi: 10.1158/0008-5472.CAN-10-2372               chemotherapy on the elimination of single dormant tumor
            23.  Bliss SA, Sinha G, Sandiford OA, et al. Mesenchymal stem   cells  in  bone  marrow  of  high-risk  breast  cancer  patients.
                cell-derived exosomes stimulate cycling quiescence and   J Clin Oncol. 2000;18(1):80-86.
                early breast cancer dormancy in bone marrow. Cancer Res.      doi: 10.1200/JCO.2000.18.1.80
                2016;76(19):5832-5844.
                                                              34.  Eliasson P, Jönsson J. The hematopoietic stem cell niche:
                doi: 10.1158/0008-5472.CAN-16-1092               Low  in  oxygen  but  a  nice  place  to  be.  J  Cell  Physiol.
            24.  Shangguan L, Li X, Wang Z, Luo Z. [Transforming growth   2010;222(1):17-22.
                factor-β1 induces bone marrow-derived mesenchymal stem      doi: 10.1002/jcp.21908
                cells to differentiate into cancer-associated fibroblasts].
                Zhonghua Zhong Liu Za Zhi. 2015;37(11):804-809.  35.  Takubo K, Goda N, Yamada W, et al. Regulation of the HIF-
                                                                 1alpha level is essential for hematopoietic stem cells.  Cell
            25.  Zhang W, Xu Z, Hao X,  et al. Bone metastasis   Stem Cell. 2010;7(3):391-402.
                initiation is coupled with bone remodeling through
                osteogenic differentiation of NG2+ cells.  Cancer Discov.      doi: 10.1016/j.stem.2010.06.020
                2023;13(2):474-495.                           36.  Vukovic M, Sepulveda C, Subramani C,  et al. Adult
                doi: 10.1158/2159-8290.CD-22-0220                hematopoietic stem cells lacking Hif-1α self-renew normally.
                                                                 Blood. 2016;127(23):2841-2846.
            26.  Correia AL, Guimaraes JC, Auf DMP, et al. Hepatic stellate
                cells suppress NK cell-sustained breast cancer dormancy.      doi: 10.1182/blood-2015-10-677138
                Nature. 2021;594(7864):566-571.               37.  Zhang CC, Sadek HA. Hypoxia and metabolic properties
                doi: 10.1038/s41586-021-03614-z                  of hematopoietic stem cells.  Antioxid Redox Signal.
                                                                 2014;20(12):1891-1901.
            27.  Mehta AK, Kadel S, Townsend MG, Oliwa M,
                Guerriero JL. Macrophage biology and mechanisms of      doi: 10.1089/ars.2012.5019
                immune suppression in breast cancer.  Front Immunol.   38.  Li J. Quiescence regulators for hematopoietic stem cell. Exp
                2021;12:643771.                                  Hematol. 2011;39(5):511-520.
                doi: 10.3389/fimmu.2021.643771                   doi: 10.1016/j.exphem.2011.01.008
            28.  Ugel S, De Sanctis F, Mandruzzato S, Bronte V. Tumor-  39.  Liu H, Liu D, Ding G, Liao P, Zhang J. Hypoxia-inducible
                induced myeloid deviation: when myeloid-derived   factor-1α and Wnt/β-catenin signaling pathways promote
                suppressor cells meet tumor-associated macrophages. J Clin   the  invasion  of hypoxic  gastric  cancer  cells.  Mol Med
                Invest. 2015;125(9):3365-3376.                   Rep. 2015;12(3):3365-3373.
                doi: 10.1172/JCI80006                            doi: 10.3892/mmr.2015.3812
            29.  Arellano DL, Juárez P, Verdugo-Meza A,  et al. Bone   40.  Villa JC, Chiu D, Brandes AH, et al. Nontranscriptional role


            Volume 1 Issue 3 (2025)                         19                           doi: 10.36922/OR025200017
   111   112   113   114   115   116   117   118   119   120   121