Page 45 - TD-4-2
P. 45
Tumor Discovery Understanding glioblastoma invasion and therapy
80. Gritsenko PG, Atlasy N, Dieteren CEJ, et al. p120-catenin- doi: 10.1016/j.spen.2015.03.009
dependent collective brain infiltration by glioma cell 91. Pettee KM, Becker KN, Alberts AS, Reinard KA,
networks. Nat Cell Biol. 2020;22(1):97-107.
Schroeder JL, Eisenmann KM. Targeting the mdia formin-
doi: 10.1038/s41556-019-0443-x assembled cytoskeleton is an effective anti-invasion strategy
in adult high-grade glioma patient-derived neurospheres.
81. Beadle C, Assanah MC, Monzo P, Vallee R, Rosenfeld SS, Cancers (Basel). 2019;11(3):392.
Canoll P. The role of myosin II in glioma invasion of the
brain. Mol Biol Cell. 2008;19(8):3357-3368. doi: 10.3390/cancers11030392
doi: 10.1091/mbc.e08-03-0319 92. Horne EA, Diaz P, Cimino PJ, et al. A brain-penetrant
microtubule-targeting agent that disrupts hallmarks of
82. Cuddapah VA, Robel S, Watkins S, Sontheimer H. A glioma tumorigenesis. Neurooncol Adv. 2021;3(1):vdaa165.
neurocentric perspective on glioma invasion. Nat Rev
Neurosci. 2014;15(7):455-465. doi: 10.1093/noajnl/vdaa165
doi: 10.1038/nrn3765 93. Al-Koussa H, Atat OE, Jaafar L, Tashjian H, El-Sibai M. The
role of Rho GTPases in motility and invasion of glioblastoma
83. Zottel A, Jovcevska I, Samec N, Komel R. Cytoskeletal cells. Anal Cell Pathol (Amst). 2020;2020:9274016.
proteins as glioblastoma biomarkers and targets for
therapy: A systematic review. Crit Rev Oncol Hematol. doi: 10.1155/2020/9274016
2021;160:103283. 94. Hirata E, Yukinaga H, Kamioka Y, et al. In vivo fluorescence
doi: 10.1016/j.critrevonc.2021.103283 resonance energy transfer imaging reveals differential
activation of Rho-family GTPases in glioblastoma cell
84. Arden JD, Lavik KI, Rubinic KA, et al. Small-molecule invasion. J Cell Sci. 2012;125(Pt 4):858-868.
agonists of mammalian Diaphanous-related (mDia) formins
reveal an effective glioblastoma anti-invasion strategy. Mol doi: 10.1242/jcs.089995
Biol Cell. 2015;26(21):3704-3718. 95. Xu J, Simonelli F, Li X, et al. Molecular mechanisms of
doi: 10.1091/mbc.E14-11-1502 the blockage of glioblastoma motility. J Chem Inf Model.
2021;61(6):2967-2980.
85. Yamana N, Arakawa Y, Nishino T, et al. The Rho-mDia1
pathway regulates cell polarity and focal adhesion turnover doi: 10.1021/acs.jcim.1c00279
in migrating cells through mobilizing Apc and c-Src. Mol 96. Okura H, Golbourn BJ, Shahzad U, et al. A role for activated
Cell Biol. 2006;26(18):6844-6858. Cdc42 in glioblastoma multiforme invasion. Oncotarget.
doi: 10.1128/mcb.00283-06 2016;7(35):56958-56975.
86. Li Z, Xu Y, Zhang C, Liu X, Jiang L, Chen F. Mammalian doi: 10.18632/oncotarget.10925
diaphanous-related formin 1 is required for motility and 97. Xu J, Galvanetto N, Nie J, Yang Y, Torre V. Rac1 promotes
invadopodia formation in human U87 glioblastoma cells. cell motility by controlling cell mechanics in human
Int J Mol Med. 2014;33(2):383-391. glioblastoma. Cancers (Basel). 2020;12(6):1667.
doi: 10.3892/ijmm.2013.1577 doi: 10.3390/cancers12061667
87. Heuser VD, Kiviniemi A, Lehtinen L, et al. Multiple formin 98. Forget MA, Desrosiers RR, Del M, et al. The expression of
proteins participate in glioblastoma migration. BMC Cancer. rho proteins decreases with human brain tumor progression:
2020;20(1):710. Potential tumor markers. Clin Exp Metastasis. 2002;19(1):9-15.
doi: 10.1186/s12885-020-07211-7 doi: 10.1023/a:1013884426692
88. Higa N, Shinsato Y, Kamil M, et al. Formin-like 1 (FMNL1) 99. SenGupta S, Parent CA, Bear JE. The principles of directed
is associated with glioblastoma multiforme mesenchymal cell migration. Nat Rev Mol Cell Biol. 2021;22(8):529-547.
subtype and independently predicts poor prognosis. Int J
Mol Sci. 2019;20(24):6355. doi: 10.1038/s41580-021-00366-6
100. Annabi B, Bouzeghrane M, Moumdjian R, Moghrabi A,
doi: 10.3390/ijms20246355
Béliveau R. Probing the infiltrating character of brain
89. Monzo P, Chong YK, Guetta-Terrier C, et al. Mechanical tumors: Inhibition of RhoA/ROK-mediated CD44 cell
confinement triggers glioma linear migration dependent on surface shedding from glioma cells by the green tea catechin
formin FHOD3. Mol Biol Cell. 2016;27(8):1246-1261. EGCg. J Neurochem. 2005;94(4):906-916.
doi: 10.1091/mbc.E15-08-0565 doi: 10.1111/j.1471-4159.2005.03256.x
90. Katsetos CD, Reginato MJ, Baas PW, et al. Emerging 101. Ulrich TA, de Juan Pardo EM, Kumar S. The mechanical
microtubule targets in glioma therapy. Semin Pediatr Neurol. rigidity of the extracellular matrix regulates the structure,
2015;22(1):49-72. motility, and proliferation of glioma cells. Cancer Res.
Volume 4 Issue 2 (2025) 37 doi: 10.36922/td.8578

