Page 45 - TD-4-2
P. 45

Tumor Discovery                                               Understanding glioblastoma invasion and therapy



            80.  Gritsenko PG, Atlasy N, Dieteren CEJ, et al. p120-catenin-     doi: 10.1016/j.spen.2015.03.009
               dependent collective brain infiltration by glioma cell   91.  Pettee  KM,  Becker  KN,  Alberts  AS,  Reinard  KA,
               networks. Nat Cell Biol. 2020;22(1):97-107.
                                                                  Schroeder JL, Eisenmann KM. Targeting the mdia formin-
               doi: 10.1038/s41556-019-0443-x                     assembled cytoskeleton is an effective anti-invasion strategy
                                                                  in  adult  high-grade  glioma  patient-derived  neurospheres.
            81.  Beadle C, Assanah MC, Monzo P, Vallee R, Rosenfeld SS,   Cancers (Basel). 2019;11(3):392.
               Canoll P. The role of myosin II in glioma invasion of the
               brain. Mol Biol Cell. 2008;19(8):3357-3368.        doi: 10.3390/cancers11030392
               doi: 10.1091/mbc.e08-03-0319                    92.  Horne EA, Diaz P, Cimino PJ,  et al. A  brain-penetrant
                                                                  microtubule-targeting agent that disrupts hallmarks of
            82.  Cuddapah  VA,  Robel  S,  Watkins  S,  Sontheimer  H.  A   glioma tumorigenesis. Neurooncol Adv. 2021;3(1):vdaa165.
               neurocentric perspective on glioma invasion.  Nat Rev
               Neurosci. 2014;15(7):455-465.                      doi: 10.1093/noajnl/vdaa165
               doi: 10.1038/nrn3765                            93.  Al-Koussa H, Atat OE, Jaafar L, Tashjian H, El-Sibai M. The
                                                                  role of Rho GTPases in motility and invasion of glioblastoma
            83.  Zottel  A, Jovcevska  I, Samec N,  Komel  R.  Cytoskeletal   cells. Anal Cell Pathol (Amst). 2020;2020:9274016.
               proteins  as  glioblastoma  biomarkers  and  targets  for
               therapy: A  systematic review.  Crit Rev Oncol Hematol.      doi: 10.1155/2020/9274016
               2021;160:103283.                                94.  Hirata E, Yukinaga H, Kamioka Y, et al. In vivo fluorescence
               doi: 10.1016/j.critrevonc.2021.103283              resonance energy transfer imaging reveals differential
                                                                  activation of Rho-family GTPases in glioblastoma cell
            84.  Arden JD, Lavik KI, Rubinic KA,  et al. Small-molecule   invasion. J Cell Sci. 2012;125(Pt 4):858-868.
               agonists of mammalian Diaphanous-related (mDia) formins
               reveal an effective glioblastoma anti-invasion strategy. Mol      doi: 10.1242/jcs.089995
               Biol Cell. 2015;26(21):3704-3718.               95.  Xu  J,  Simonelli  F,  Li  X,  et  al.  Molecular  mechanisms  of
               doi: 10.1091/mbc.E14-11-1502                       the blockage of glioblastoma motility.  J  Chem Inf Model.
                                                                  2021;61(6):2967-2980.
            85.  Yamana N, Arakawa Y, Nishino T,  et al. The Rho-mDia1
               pathway regulates cell polarity and focal adhesion turnover      doi: 10.1021/acs.jcim.1c00279
               in migrating cells through mobilizing Apc and c-Src. Mol   96.  Okura H, Golbourn BJ, Shahzad U, et al. A role for activated
               Cell Biol. 2006;26(18):6844-6858.                  Cdc42  in  glioblastoma  multiforme  invasion.  Oncotarget.
               doi: 10.1128/mcb.00283-06                          2016;7(35):56958-56975.
            86.  Li Z, Xu Y, Zhang C, Liu X, Jiang L, Chen F. Mammalian      doi: 10.18632/oncotarget.10925
               diaphanous-related formin 1 is required for motility and   97.  Xu J, Galvanetto N, Nie J, Yang Y, Torre V. Rac1 promotes
               invadopodia formation in human U87 glioblastoma cells.   cell motility by controlling cell mechanics in human
               Int J Mol Med. 2014;33(2):383-391.                 glioblastoma. Cancers (Basel). 2020;12(6):1667.
               doi: 10.3892/ijmm.2013.1577                        doi: 10.3390/cancers12061667
            87.  Heuser VD, Kiviniemi A, Lehtinen L, et al. Multiple formin   98.  Forget MA, Desrosiers RR, Del M, et al. The expression of
               proteins participate in glioblastoma migration. BMC Cancer.   rho proteins decreases with human brain tumor progression:
               2020;20(1):710.                                    Potential tumor markers. Clin Exp Metastasis. 2002;19(1):9-15.
               doi: 10.1186/s12885-020-07211-7                    doi: 10.1023/a:1013884426692

            88.  Higa N, Shinsato Y, Kamil M, et al. Formin-like 1 (FMNL1)   99.  SenGupta S, Parent CA, Bear JE. The principles of directed
               is associated with glioblastoma multiforme mesenchymal   cell migration. Nat Rev Mol Cell Biol. 2021;22(8):529-547.
               subtype and independently predicts poor prognosis.  Int J
               Mol Sci. 2019;20(24):6355.                         doi: 10.1038/s41580-021-00366-6
                                                               100. Annabi B, Bouzeghrane M, Moumdjian R, Moghrabi A,
               doi: 10.3390/ijms20246355
                                                                  Béliveau R. Probing the infiltrating character of brain
            89.  Monzo P, Chong YK, Guetta-Terrier C,  et al. Mechanical   tumors: Inhibition of RhoA/ROK-mediated CD44 cell
               confinement triggers glioma linear migration dependent on   surface shedding from glioma cells by the green tea catechin
               formin FHOD3. Mol Biol Cell. 2016;27(8):1246-1261.  EGCg. J Neurochem. 2005;94(4):906-916.
               doi: 10.1091/mbc.E15-08-0565                       doi: 10.1111/j.1471-4159.2005.03256.x
            90.  Katsetos  CD,  Reginato  MJ,  Baas  PW,  et al.  Emerging   101. Ulrich TA, de Juan Pardo EM, Kumar S. The mechanical
               microtubule targets in glioma therapy. Semin Pediatr Neurol.   rigidity of the extracellular matrix regulates the structure,
               2015;22(1):49-72.                                  motility, and proliferation of glioma cells.  Cancer  Res.


            Volume 4 Issue 2 (2025)                         37                                doi: 10.36922/td.8578
   40   41   42   43   44   45   46   47   48   49   50