Page 44 - manuscript_ijb05590
P. 44

138. Simpson RJ, Lim ,Justin WE, Moritz ,Robert L, and Mathivanan S. Exosomes:
                        proteomic  insights  and  diagnostic  potential.  Expert  Rev  Proteomics.
                        2009;6(3):267-283. doi:10.1586/epr.09.17

                   139. Wang Y, Wang S, Li L, Zou Y, Liu B, Fang X. Microfluidics-based molecular
                        profiling of tumor-derived exosomes for liquid biopsy. View. 2023;4(2):20220048.
                        doi:10.1002/VIW.20220048


                   140. Reátegui  E,  van  der  Vos  KE,  Lai  CP,  et  al.  Engineered  nanointerfaces  for
                        microfluidic  isolation  and  molecular  profiling  of  tumor-specific  extracellular
                        vesicles. Nat Commun. 2018;9(1):175. doi:10.1038/s41467-017-02261-1

                   141. Dorayappan  KDP,  Gardner  ML,  Hisey  CL,  et  al. A  microfluidic  chip  enables
                        isolation of exosomes and establishment of their protein profiles and associated
                        signaling  pathways  in  ovarian  cancer.  Cancer  Res.  2019;79(13):3503-3513.
                        doi:10.1158/0008-5472.CAN-18-3538

                   142. Barbosa  AI,  Reis  NM.  A  critical  insight  into  the  development  pipeline  of
                        microfluidic  immunoassay  devices  for  the  sensitive  quantitation  of  protein
                        biomarkers    at   the   point   of   care.   Analyst.   2017;142(6):858-882.
                        doi:10.1039/C6AN02445A


                   143. Emde  B,  Niehaus  K,  Tickenbrock  L.  Evaluation  of  3D-Printed  Microfluidic
                        Structures for Use in AML-Specific Biomarker Detection of PML::RARA. Int J
                        Mol Sci. 2025;26(2):497. doi:10.3390/ijms26020497

                   144. Sharafeldin  M,  Chen  T,  Ozkaya  GU,  et  al.  Detecting  cancer  metastasis  and
                        accompanying  protein  biomarkers  at  single  cell  levels  using  a  3D-printed
                        microfluidic    immunoarray.     Biosens     Bioelectron.    2021;171:112681.
                        doi:10.1016/j.bios.2020.112681

                   145. Chen C, Ran B, Liu B, et al. Development of a novel microfluidic biosensing
                        platform  integrating  micropillar  array  electrode  and  acoustic  microstreaming
                        techniques.          Biosens           Bioelectron.          2023;223:114703.
                        doi:10.1016/j.bios.2022.114703


                   146. Lee D, Tran HQ, Sharma NS, et al. 3D-printed microfluidic platform for creating
                        porous  nanofibrous  microspheres  to  regulate  cell  response  and  enhance  tissue
                        regeneration. Small Weinh Bergstr Ger. Published online May 2, 2025:e2502033.
                        doi:10.1002/smll.202502033

                   147. Nielsen AV, Beauchamp MJ, Nordin GP, Woolley AT. 3D printed microfluidics.
                        Annu Rev Anal Chem Palo Alto Calif. 2020;13(1):45-65. doi:10.1146/annurev-
                        anchem-091619-102649

                   148. Barbosa  F,  Coutinho  P,  Ribeiro  MP,  Moreira AF,  Lourenço  LM,  Miguel  SP.


                                                            43
   39   40   41   42   43   44   45   46   47   48   49