Page 40 - manuscript_ijb05590
P. 40

doi:10.3390/cancers13040874


                   94.  Swartz MA,  Iida N, Roberts EW, et  al. Tumor  microenvironment  complexity:
                        emerging  roles  in  cancer  therapy.  Cancer  Res.  2012;72(10):2473-2480.
                        doi:10.1158/0008-5472.CAN-12-0122


                   95.  Han J, Jeong HJ, Choi J, et al. Bioprinted patient-derived organoid arrays capture
                        intrinsic and extrinsic tumor features for advanced personalized medicine. Adv Sci
                        Weinh Baden-Wurtt Ger. 2025;12(20):e2407871. doi:10.1002/advs.202407871

                   96.  Xu  K,  Huang Y, Wu  M, Yin  J, Wei  P.  3D  bioprinting  of  multi-cellular  tumor
                        microenvironment  for  prostate  cancer  metastasis.  Biofabrication.  2023;15(3).
                        doi:10.1088/1758-5090/acd960


                   97.  Xiong Q, Liu T, Ying Y, et  al.  Establishment  of bladder cancer spheroids  and
                        cultured in microfluidic platform for predicting drug response. Bioeng Transl Med.
                        2024;9(2):e10624. doi:10.1002/btm2.10624

                   98.  Skubal M, Larney BM, Phung NB, et al. Vascularized tumor on a microfluidic
                        chip  to  study  mechanisms  promoting  tumor  neovascularization  and  vascular
                        targeted therapies. Theranostics. 2025;15(3):766-783. doi:10.7150/thno.95334

                   99.  G P, Singh M, Gupta PK, Shukla R. Synergy of microfluidics and nanomaterials:
                        a  revolutionary  approach  for  cancer  management.  ACS  Appl  Bio  Mater.
                        2025;8(4):2716-2734. doi:10.1021/acsabm.5c00123


                   100. Goel  HL,  Mercurio  AM.  VEGF  targets  the  tumour  cell.  Nat  Rev  Cancer.
                        2013;13(12):871-882. doi:10.1038/nrc3627

                   101. Abdalla AME, Xiao L, Ullah MW, Yu M, Ouyang C, Yang G. Current Challenges
                        of  Cancer  Anti-angiogenic  Therapy  and  the  Promise  of  Nanotherapeutics.
                        Theranostics. 2018;8(2):533-548. doi:10.7150/thno.21674


                   102. Chen X, Qian H, Qiao H, et al. Tumor-Adhesive and pH-Degradable Microgels
                        by  Microfluidics  and  Photo-Cross-Linking  for  Efficient Antiangiogenesis  and
                        Enhanced  Cancer  Chemotherapy.  Biomacromolecules.  2020;21(3):1285-1294.
                        doi:10.1021/acs.biomac.0c00049


                   103. Huang  K,  He  Y,  Zhu  Z,  et  al.  Small,  traceable,  endosome-disrupting,  and
                        bioresponsive  click  nanogels  fabricated  via  microfluidics  for  CD44-targeted
                        cytoplasmic  delivery  of  therapeutic  proteins.  ACS  Appl  Mater  Interfaces.
                        Published online June 3, 2019. doi:10.1021/acsami.9b05827

                   104. Arduino I, Di Fonte R, Sommonte F, et al. Fabrication of Biomimetic Hybrid
                        Liposomes  via  Microfluidic  Technology:  Homotypic  Targeting  and Antitumor
                        Efficacy  Studies  in  Glioma  Cells.  Int  J  Nanomedicine.  2024;19:13217-13233.
                        doi:10.2147/IJN.S489872
                                                            39
   35   36   37   38   39   40   41   42   43   44   45