Page 38 - manuscript_ijb05590
P. 38

71.  Ao Z, Cai H, Wu Z, et al. Evaluation of cancer immunotherapy using mini-tumor
                        chips. Theranostics. 2022;12(8):3628-3636. doi:10.7150/thno.71761


                   72.  Ruzycka M, Cimpan MR, Rios-Mondragon I, Grudzinski IP. Microfluidics for
                        studying metastatic patterns of lung cancer. J Nanobiotechnology. 2019;17(1):71.
                        doi:10.1186/s12951-019-0492-0


                   73.  Behroodi E, Latifi H, Bagheri Z, Ermis E, Roshani S, Salehi Moghaddam M. A
                        combined  3D  printing/CNC  micro-milling  method  to  fabricate  a  large-scale
                        microfluidic device with the small size 3D architectures: an application for tumor
                        spheroid production. Sci Rep. 2020;10(1):22171. doi:10.1038/s41598-020-79015-
                        5

                   74.  Silvani G, Bradbury P, Basirun C, et al. Testing 3D printed biological platform for
                        advancing  simulated  microgravity  and  space  mechanobiology  research.  NPJ
                        Microgravity. 2022;8(1):19. doi:10.1038/s41526-022-00207-6

                   75.  Jubelin C, Muñoz-Garcia J, Griscom L, et al. Three-dimensional in vitro culture
                        models in oncology research. Cell Biosci. 2022;12(1):155. doi:10.1186/s13578-
                        022-00887-3


                   76.  Vitale S, Calapà F, Colonna F, et al. Advancements in 3D In vitro models for
                        colorectal cancer. Adv Sci. 2024;11(32):2405084. doi:10.1002/advs.202405084

                   77.  Yi HG. Introduction to bioprinting of in vitro cancer models. Essays Biochem.
                        2021;65(3):603-610. doi:10.1042/EBC20200104


                   78.  Yang R, Zhan M, Shen S, et al. Microfluidic synthesis of carrier-free full-active
                        metal-phenolic nanocapsules for tumor chemo-chemodynamic-immune therapy.
                        Adv Funct Mater. 2025;35(11):2417070. doi:10.1002/adfm.202417070

                   79.  Sontheimer-Phelps A, Hassell BA, Ingber DE. Modelling cancer in microfluidic
                        human organs-on-chips. Nat Rev Cancer. 2019;19(2):65-81. doi:10.1038/s41568-
                        018-0104-6

                   80.  Yang R, Ouyang Z, Guo H, et al. Microfluidic synthesis of intelligent nanoclusters
                        of ultrasmall iron oxide nanoparticles with improved tumor microenvironment
                        regulation  for  dynamic  MR  imaging-guided  tumor  photothermo-chemo-
                        chemodynamic          therapy.      Nano        Today.        2022;46:101615.
                        doi:10.1016/j.nantod.2022.101615


                   81.  Oh HJ, Kim J, Kim H, Choi N, Chung S. Microfluidic Reconstitution of Tumor
                        Microenvironment  for  Nanomedical  Applications.  Adv  Healthc  Mater.
                        2021;10(9):2002122. doi:10.1002/adhm.202002122


                   82.  Lim W, Park S. A Microfluidic Spheroid Culture Device with a Concentration
                        Gradient Generator for High-Throughput Screening of Drug Efficacy. Molecules.
                                                            37
   33   34   35   36   37   38   39   40   41   42   43