Page 36 - manuscript_ijb05590
P. 36

48.  Waheed  S,  Cabot  JM,  Macdonald  NP,  et  al.  3D  printed  microfluidic  devices:
                        enablers and barriers. Lab Chip. 2016;16(11):1993-2013. doi:10.1039/c6lc00284f


                   49.  Zhang N, Wang Z, Zhao Z, et al. 3D printing of micro-nano devices and their
                        applications. Microsyst Nanoeng. 2025;11(1):35. doi:10.1038/s41378-024-00812-
                        3


                   50.  Logunov L, Ulesov A, Khramenkova V, et al. 3D and Inkjet Printing by Colored
                        Mie-Resonant  Silicon  Nanoparticles  Produced  by  Laser  Ablation  in  Liquid.
                        Nanomaterials. 2023;13(6):965. doi:10.3390/nano13060965

                   51.  Sagot  M,  Derkenne  T,  Giunchi  P,  et  al.  Functionality  integration  in
                        stereolithography 3D printed microfluidics using a “print-pause-print” strategy.
                        Lab Chip. 2024;24(14):3508-3520. doi:10.1039/D4LC00147H


                   52.  Su R, Wang F, McAlpine MC. 3D printed microfluidics: advances in strategies,
                        integration,   and    applications.    Lab    Chip.     2023;23(5):1279-1299.
                        doi:10.1039/D2LC01177H


                   53.  Groll J, Burdick JA, Cho DW, et al. A definition of bioinks and their distinction
                        from  biomaterial  inks.  Biofabrication.  2018;11(1):13001.  doi:10.1088/1758-
                        5090/aaec52

                   54.  Coates IA, Pan W, Saccone MA, et al. High-resolution stereolithography: negative
                        spaces  enabled  by  control  of  fluid  mechanics.  Proc  Natl  Acad  Sci  U  S  A.
                        2024;121(37):e2405382121. doi:10.1073/pnas.2405382121


                   55.  Randhawa A, Dutta SD, Ganguly K, Patel DK, Patil TV, Lim KT. Recent advances
                        in  3D  printing  of  photocurable  polymers:  types,  mechanism,  and  tissue
                        engineering     application.   Macromol       Biosci.    2023;23(1):e2200278.
                        doi:10.1002/mabi.202200278


                   56.  Shahrubudin N, Koshy P, Alipal J, Kadir MHA, Lee TC. Challenges of 3D printing
                        technology for manufacturing biomedical products: A case study of Malaysian
                        manufacturing            firms.          Heliyon.           2020;6(4):e03734.
                        doi:10.1016/j.heliyon.2020.e03734

                   57.  Naderi A,  Bhattacharjee  N,  Folch A.  Digital  Manufacturing  for  Microfluidics.
                        Annu     Rev     Biomed     Eng.    2019;21(Volume      21,    2019):325-364.
                        doi:10.1146/annurev-bioeng-092618-020341


                   58.  Karamzadeh V, Sohrabi-Kashani A, Shen M, Juncker D. Digital Manufacturing of
                        Functional     Ready-to-Use      Microfluidic     Systems.     Adv      Mater.
                        2023;35(47):2303867. doi:10.1002/adma.202303867


                   59.  Shafique  H,  Karamzadeh V,  Kim  G,  et  al.  High-resolution  low-cost  LCD  3D
                        printing  for  microfluidics  and  organ-on-a-chip  devices.  Lab  Chip.
                                                            35
   31   32   33   34   35   36   37   38   39   40   41