Page 37 - manuscript_ijb05590
P. 37

2024;24(10):2774-2790. doi:10.1039/D3LC01125A


                   60.  Steinberg E, Friedman R, Goldstein Y, et al. A fully 3D-printed versatile tumor-
                        on-a-chip allows multi-drug screening and correlation with clinical outcomes for
                        personalized medicine. Commun Biol. 2023;6(1):1-14. doi:10.1038/s42003-023-
                        05531-5


                   61.  Ong  LJY,  Islam A,  DasGupta  R,  Iyer  NG,  Leo  HL,  Toh  YC. A  3D  printed
                        microfluidic perfusion device for multicellular spheroid cultures. Biofabrication.
                        2017;9(4):045005. doi:10.1088/1758-5090/aa8858

                   62.  Chen J, Liu CY, Wang X, et al. 3D printed microfluidic devices for circulating
                        tumor  cells  (CTCs)  isolation.  Biosens  Bioelectron.  2020;150:111900.
                        doi:10.1016/j.bios.2019.111900


                   63.  Wang  S,  Chen  X,  Han  X,  et  al.  A  review  of  3D  printing  technology  in
                        pharmaceutics:  technology  and  applications,  now  and  future.  Pharmaceutics.
                        2023;15(2):416. doi:10.3390/pharmaceutics15020416


                   64.  Han C, Zhang R, He X, et al. A digital manufactured microfluidic platform for
                        flexible construction of 3D co-culture tumor model with spatiotemporal resolution.
                        Biofabrication. 2024;17(1). doi:10.1088/1758-5090/ad9636

                   65.  Moghimi N, Hosseini SA, Dalan AB, Mohammadrezaei D, Goldman A, Kohandel
                        M.  Controlled  tumor  heterogeneity  in  a  co-culture  system  by  3D  bio-printed
                        tumor-on-chip model. Sci Rep. 2023;13:13648. doi:10.1038/s41598-023-40680-x


                   66.  Schuster  B,  Junkin  M,  Kashaf  SS,  et  al. Automated  microfluidic  platform  for
                        dynamic  and  combinatorial  drug  screening  of  tumor  organoids.  Nat  Commun.
                        2020;11(1):5271. doi:10.1038/s41467-020-19058-4

                   67.  Prince E, Kheiri S, Wang Y, et al. Microfluidic arrays of breast tumor spheroids
                        for  drug  screening  and  personalized  cancer  therapies.  Adv  Healthc  Mater.
                        2022;11(1):e2101085. doi:10.1002/adhm.202101085

                   68.  Ayuso  JM,  Gong  MM,  Skala  MC,  Harari  PM,  Beebe  DJ.  Human  Tumor-
                        Lymphatic Microfluidic Model Reveals Differential Conditioning of Lymphatic
                        Vessels  by  Breast  Cancer  Cells.  Adv  Healthc  Mater.  2020;9(3):1900925.
                        doi:10.1002/adhm.201900925


                   69.  Mehta P, Rahman Z, Ten Dijke P, Boukany PE. Microfluidics meets 3D cancer
                        cell       migration.        Trends         Cancer.        2022;8(8):683-697.
                        doi:10.1016/j.trecan.2022.03.006

                   70.  Morshed A,  Dutta  P.  Hypoxic  behavior  in  cells  under  controlled  microfluidic
                        environment.  Biochim  Biophys  Acta  Gen  Subj.  2017;1861(4):759-771.
                        doi:10.1016/j.bbagen.2017.01.017
                                                            36
   32   33   34   35   36   37   38   39   40   41   42