Page 39 - manuscript_ijb05590
P. 39

2018;23(12):3355. doi:10.3390/molecules23123355


                   83.  Komar ZM, van Gent DC, Chakrabarty S. Establishing a Microfluidic Tumor Slice
                        Culture  Platform  to  Study  Drug  Response.  Curr  Protoc.  2023;3(3):e693.
                        doi:10.1002/cpz1.693


                   84.  Du Z, Mi S, Yi X, Xu Y, Sun W. Microfluidic system for modelling 3D tumour
                        invasion  into  surrounding  stroma  and  drug  screening.  Biofabrication.
                        2018;10(3):034102. doi:10.1088/1758-5090/aac70c

                   85.  Pavesi  A,  Tan  AT,  Chen  MB,  Adriani  G,  Bertoletti  A,  Kamm  RD.  Using
                        microfluidics to investigate tumor cell extravasation and T-cell immunotherapies.
                        In:  2015  37th  Annual  International  Conference  of  the  IEEE  Engineering  in
                        Medicine      and      Biology      Society     (EMBC).       2015:1853-1856.
                        doi:10.1109/EMBC.2015.7318742


                   86.  Sano  E,  Deguchi  S,  Matsuoka  N,  et  al.  Generation  of  tetrafluoroethylene-
                        propylene elastomer-based microfluidic devices for drug toxicity and metabolism
                        studies. ACS Omega. 2021;6(38):24859-24865. doi:10.1021/acsomega.1c03719


                   87.  Rahimifard M, Bagheri Z, Hadjighassem M, et al. Investigation of anti-cancer
                        effects of new pyrazino[1,2-a]benzimidazole derivatives on human glioblastoma
                        cells  through  2D  in  vitro  model  and  3D-printed  microfluidic  device.  Life  Sci.
                        2022;302:120505. doi:10.1016/j.lfs.2022.120505

                   88.  Li Y, Zhang T, Pang Y, Li L, Chen ZN, Sun W. 3D bioprinting of hepatoma cells
                        and  application  with  microfluidics  for  pharmacodynamic  test  of  Metuzumab.
                        Biofabrication. 2019;11(3):034102. doi:10.1088/1758-5090/ab256c


                   89.  Moroni L, Boland T, Burdick JA, et al. Biofabrication: a guide to technology and
                        terminology.          Trends          Biotechnol.         2018;36(4):384-402.
                        doi:10.1016/j.tibtech.2017.10.015


                   90.  Benien P, Swami A. 3D tumor models: history, advances and future perspectives.
                        Future Oncol Lond Engl. 2014;10(7):1311-1327. doi:10.2217/fon.13.274

                   91.  Jaiswal C, Dey S, Prasad J, Gupta R, Agarwala M, Mandal BB. 3D bioprinted
                        microfluidic based osteosarcoma-on-a chip model as a physiomimetic pre-clinical
                        drug  testing  platform  for  anti-cancer  drugs.  Biomaterials.  2025;320:123267.
                        doi:10.1016/j.biomaterials.2025.123267


                   92.  Xie  H,  Appelt  JW,  Jenkins  RW.  Going  with  the  flow:  modeling  the  tumor
                        microenvironment  using  microfluidic  technology.  Cancers.  2021;13(23):6052.
                        doi:10.3390/cancers13236052


                   93.  Gunti S, Hoke ATK, Vu KP, London NR. Organoid and spheroid tumor models:
                        techniques       and        applications.      Cancers.        2021;13(4):874.
                                                            38
   34   35   36   37   38   39   40   41   42   43   44