Page 121 - AIH-1-2
P. 121

Artificial Intelligence in Health                                Medical instruction-tuning for Japanese LLMs



               on Academic Articles in Medical Sciences (in Japanese). In:      doi: 10.1038/sdata.2016.35
               Proceedings of the 29  Annual Meeting of the Association for   18.  Kawazoe Y, Shibata D, Shinohara E, Aramaki E, Ohe K.
                              th
               Natural Language Processing; 2023.                 A clinical specific BERT developed using a huge Japanese
            6.   Devlin J, Chang MW, Lee K, Toutanova K. BERT: Pre-  clinical text corpus. PLoS One. 2021;16(11):e0259763.
               training of Deep Bidirectional Transformers for Language      doi: 10.1371/journal.pone.0259763
               Understanding. In: Proceedings of the 2019 Conference of the
               North American Chapter of the Association for Computational   19.  Vaswani A, Shazeer N, Parmar N, et al. Attention is all you
               Linguistics: Human Language Technologies, Volume 1 (Long   need. Adv Neural Inf Process Syst. 2017;30:5998-6008.
               and Short Papers); 2019.                        20.  Bolton E, Hall D, Yasunaga M, Lee T, Manning C, Liang P.
            7.   Hu EJ, Wallis P, Allen-Zhu Z,  et al. LoRA: Low-rank   Stanford CRFM Introduces PubMedGPT 2.7B; 2022.
               Adaptation of Large Language Models. In:  International   Available from: https://hai.stanford.edu/news/stanford-
               Conference on Learning Representations; 2021.      crfm-introduces-pubmedgpt-27b [Last accessed on 2024
                                                                  Apr 04].
            8.   Dettmers T, Pagnoni A, Holtzman A, Zettlemoyer L.
               QLoRA: Efficient Finetuning of Quantized LLMs. Advances   21.  Luo R, Sun L, Xia Y, et al. BioGPT: Generative pre-trained
               in Neural Information Processing Systems. 2023;36:10088-  transformer for biomedical text generation and mining.
               10115.                                             Brief Bioinform. 2022;23:bbac409.
            9.   Suzuki M, Hirano M, Sakaji H. From Base to Conversational:      doi: 10.1093/bib/bbac409
               Japanese Instruction Dataset and Tuning Large Language   22.  Luo Y, Zhang J, Fan S, et al. BioMedGPT: Open Multimodal
               Models. In: 2023 IEEE International Conference on Big Data   Generative Pre-trained Transformer for Biomedicine.
               (Big Data); 2023.                                  arXiv:2308.09442 [arXiv Preprint], 2023.
            10.  Xie Q, Han W, Zhang X,  et al. PIXIU: A Comprehensive      doi: 10.48550/arXiv.2308.09442
               Benchmark, Instruction Dataset and Large Language Model   23.  Radford A, Wu J, Child R, Luan D, Amodei D, Sutskever I.
               for Finance. Advances in Neural Information Processing   Language models are unsupervised multitask learners.
               Systems. 2023;36:33469-33484.                      OpenAI Blog. 2019;1:9.
            11.  Zhou C, Liu P, Xu P, et al. Lima: Less is More for Alignment.   24.  Touvron H, Martin L, Stone K,  et al. Llama 2: Open
               Advances in Neural Information Processing Systems.   Foundation and Fine-tuned Chat Models. arXiv:2307.09288
               2023;36:55006-55021.                               [arXiv Preprint], 2023.
            12.  Brown  T, Mann  B, Ryder N,  et al. Language  models  are      doi: 10.48550/arXiv.2307.09288
               few-shot learners.  Adv Neural Inf Process Syst. 2020;
               33:1877-1901.                                   25.  Wei J, Bosma M, Zhao V, et al. Fine-tuned Language Models
                                                                  are Zero-shot Learners. In:  International Conference on
            13.  Lee J, Yoon W, Kim S,  et al. BioBERT: A  pre-trained   Learning Representations; 2022.
               biomedical language representation model for biomedical
               text mining. Bioinformatics. 2020;36(4):1234-1240.  26.  Mangrulkar S, Gugger S, Debut L, Belkada Y, Paul S. PEFT:
                                                                  State-of-the-art Parameter-Efficient Fine-tuning Methods;
               doi: 10.1093/bioinformatics/btz682                 2022. Available from: https://github.com/huggingface/peft
            14.  Rasmy L, Xiang Y, Xie Z, Tao C, Zhi D. Med-BERT:   [Last accessed on 2024 Apr 04].
               Pretrained contextualized embeddings on large-scale   27.  Dettmers T, Zettlemoyer L. The Case for 4-bit Precision:
               structured electronic health records for disease prediction.   K-bit Inference Scaling Laws. In: International Conference
               NPJ Digit Med. 2021;4:86.                          on Machine Learning. PMLR; 2023.
               doi: 10.1038/s41746-021-00455-y                 28.  Jin D, Pan E, Oufattole N, Weng WH, Fang H, Szolovits P.
            15.  Huang K, Altosaar J, Ranganath R. ClinicalBERT: Modeling   What disease does this patient have? A large-scale open
               Clinical Notes and Predicting Hospital Readmission.   domain question answering dataset from medical exams.
               arXiv:1904.05342 [arXiv Preprint], 2019.           Appl Sci. 2021;11(14):6421.
                                                                  doi: 10.3390/app11146421
               doi: 10.48550/arXiv.1904.05342
                                                               29.  Pal A, Umapathi LK, Sankarasubbu, M. MedMCQA:
            16.  Gu Y, Tinn R, Cheng H,  et al. Domain-specific language   A  Large-scale Multi-Subject Multi-Choice Dataset for
               model  pretraining  for  biomedical  natural  language   Medical Domain Question Answering. In: Proceedings of the
               processing. ACM Trans Comput Healthc. 2021;3(1):1-23.
                                                                  Conference on Health, Inference, and Learning (2022); 2022.
               doi: 10.1145/3458754                               p. 248-260.
            17.  Johnson AEW, Pollard TJ, Shen L, et al. MIMIC-III, a freely   30.  Jin Q, Dhingra B, Liu Z, Cohen WW, Lu X. PubMedQA: A
               accessible critical care database. Sci Data. 2016;3:160035.  Dataset for Biomedical Research Question Answering. In:


            Volume 1 Issue 2 (2024)                        115                               doi: 10.36922/aih.2695
   116   117   118   119   120   121   122   123   124   125   126