Page 46 - AIH-2-1
P. 46

Artificial Intelligence in Health                            Deep learning on chest X-ray and CT for COVID-19



               images. Appl Intell. 2020;51:1690-1700.            networks for diagnosing infectious diseases.  Computers.
                                                                  2023;12(5):95.
               doi: 10.1007/s10489-020-01902-1
                                                                  doi: 10.3390/computers12050095
            22.  Ozturk T, Talo M, Yildirim EA, Baloglu UB, Yildirim  O,
               Rajendra  Acharya  U.  Automated  detection  of  32.  Ahmmed S, Podder P, Mondal M,  et al. Enhancing
               COVID-19  cases using deep neural networks with X-ray   brain tumor classification with transfer learning across
               images. Comput Biol Med. 2020;121:103792.          multiple classes: An in-depth analysis. BioMedInformatics.
                                                                  2023;3(4):1124-1144.
               doi: 10.1016/j.compbiomed.2020.103792
                                                                  doi: 10.3390/biomedinformatics3040068
            23.  Apostolopoulos ID, Aznaouridis SI, Tzani MA. Extracting
               possibly representative COVID-19 biomarkers from X-ray   33.  Kostka K, Roel E, Trinh NT, et al. The burden of post-acute
               images with deep learning approach and image data related   COVID-19 symptoms in a multinational network cohort
               to pulmonary diseases. J Med Biol Eng. 2020;40(3):462-469.  analysis. Nat Commun. 2023;14:7449.
               doi: 10.1007/s40846-020-00529-4                    doi: 10.1038/s41467-023-42726-0
            24.  Rahaman MM, Li C, Yao Y,  et al. Identification of   34.  Cohen  JP, Morrison  P, Dao  L.  COVID-19  Image  Data
               COVID-19  samples from chest X-Ray images using deep   Collection; 2020.
               learning:  A  comparison  of transfer learning approaches.      doi: 10.48550/arXiv.2003.11597
               J Xray Sci Technol. 2020;28(5):821-839.
                                                               35.  Yang X, He X, Zhao J, Zhang Y, Zhang S, Xie P. COVID-
               doi: 10.3233/xst-200715                            CT-Dataset: A  CT Scan Dataset about COVID-19; 2020.
            25.  Ouchicha C, Ammor O, Meknassi M. CVDNet: A  novel   Available from: http://arxiv.org/abs/2003.13865 [Last
               deep learning architecture for detection of coronavirus   accessed on 2021 Apr 09].
               (Covid-19) from chest x-ray images. Chaos Solitons Fractals.   36.  Cohen JP. GitHub; 2020. Available from: https://github.com/
               2020;140:110245.                                   ieee8023/covid-chestxray-dataset [Last accessed on 2021
                                                                  Apr 09].
               doi: 10.1016/j.chaos.2020.110245
                                                               37.  Chest X-Ray Images (Pneumonia). Available from: https://
            26.  Ayan E, Ünver HM. Diagnosis of Pneumonia from Chest
               X-Ray Images Using Deep Learning. Istanbul, Turkey:   kaggle.com/paultimothymooney/chest-xray-pneumonia
               Scientific Meeting on Electrical-Electronics and Biomedical   [Last accessed on Apr 09].
               Engineering and Computer Science (EBBT); 2019. p. 1-5.  38.  He K, Zhang X, Ren S, Sun J. Deep Residual Learning for
                                                                  Image Recognition. 2016 IEEE Conference on Computer
               doi: 10.1109/EBBT.2019.8741582
                                                                  Vision and Pattern Recognition (CVPR); 2016. p. 770-778.
            27.  Asnaoui, Khalid El, Chawki Y, Idri A. Automated Methods      doi: 10.1109/cvpr.2016.90
               for Detection and Classification Pneumonia based on
               X-Ray Images Using Deep Learning. arXiv. Ithaca: Cornell   39.  Hu  J,  Shen  L,  Albanie  S,  Sun  G,  Wu  E.  Squeeze-and-
               University; 2020.                                  Excitation Networks; 2017.
               doi: 10.48550/arxiv.2003.14363                     doi: 10.48550/arxiv.1709.01507
            28.  Elshennawy  NM,  Ibrahim  DM.  Deep-pneumonia  40.  Xie S, Girshick R, Dollár P, Tu Z, He K. Aggregated Residual
               framework using deep learning models based on chest X-ray   Transformations for Deep Neural Networks. Honolulu, HI,
               images. Diagnostics. 2020;10(9):649.               USA:  IEEE  Conference  on  Computer  Vision  and  Pattern
                                                                  Recognition (CVPR); 2017. p. 5987-5995.
               doi: 10.3390/diagnostics10090649
                                                                  doi: 10.1109/CVPR.2017.634
            29.  Ibrahim AU, Ozsoz M, Serte S, Al-Turjman F, Yakoi  PS.
               Pneumonia classification using deep learning from   41.  Simonyan K, Vedaldi A, Zisserman A. Deep Inside
               chest X-ray images during COVID-19.  Cogn  Comput.   Convolutional Networks: Visualising Image Classification
               2021;16:1589-1601.                                 Models and Saliency Maps; 2013.
               doi: 10.1007/s12559-020-09787-5                    doi: 10.48550/arXiv.1312.6034
            30.  Kundu R, Das R, Geem ZW, Han GT, Sarkar R. Pneumonia   42.  Tan M, Le QV. EfficientNet: Rethinking Model Scaling for
               detection in chest X-ray images using an ensemble of deep   Convolutional Neural Networks; 2019.
               learning models. PLoS One. 2021;16(9):e0256630.     doi: 10.48550/arXiv.1905.11946
               doi: 10.1371/journal.pone.0256630               43.  Simon M, Rodner E, Denzler J. ImageNet Pre-trained
                                                                  Models with Batch Normalization; 2016.
            31.  Podder  P, Alam  FB, Mondal MR, Hasan MJ, Rohan  A,
               Bharati  S. Rethinking densely connected convolutional      doi: 10.48550/arXiv.1612.01452



            Volume 2 Issue 1 (2025)                         40                               doi: 10.36922/aih.2888
   41   42   43   44   45   46   47   48   49   50   51