Page 46 - AIH-2-1
P. 46
Artificial Intelligence in Health Deep learning on chest X-ray and CT for COVID-19
images. Appl Intell. 2020;51:1690-1700. networks for diagnosing infectious diseases. Computers.
2023;12(5):95.
doi: 10.1007/s10489-020-01902-1
doi: 10.3390/computers12050095
22. Ozturk T, Talo M, Yildirim EA, Baloglu UB, Yildirim O,
Rajendra Acharya U. Automated detection of 32. Ahmmed S, Podder P, Mondal M, et al. Enhancing
COVID-19 cases using deep neural networks with X-ray brain tumor classification with transfer learning across
images. Comput Biol Med. 2020;121:103792. multiple classes: An in-depth analysis. BioMedInformatics.
2023;3(4):1124-1144.
doi: 10.1016/j.compbiomed.2020.103792
doi: 10.3390/biomedinformatics3040068
23. Apostolopoulos ID, Aznaouridis SI, Tzani MA. Extracting
possibly representative COVID-19 biomarkers from X-ray 33. Kostka K, Roel E, Trinh NT, et al. The burden of post-acute
images with deep learning approach and image data related COVID-19 symptoms in a multinational network cohort
to pulmonary diseases. J Med Biol Eng. 2020;40(3):462-469. analysis. Nat Commun. 2023;14:7449.
doi: 10.1007/s40846-020-00529-4 doi: 10.1038/s41467-023-42726-0
24. Rahaman MM, Li C, Yao Y, et al. Identification of 34. Cohen JP, Morrison P, Dao L. COVID-19 Image Data
COVID-19 samples from chest X-Ray images using deep Collection; 2020.
learning: A comparison of transfer learning approaches. doi: 10.48550/arXiv.2003.11597
J Xray Sci Technol. 2020;28(5):821-839.
35. Yang X, He X, Zhao J, Zhang Y, Zhang S, Xie P. COVID-
doi: 10.3233/xst-200715 CT-Dataset: A CT Scan Dataset about COVID-19; 2020.
25. Ouchicha C, Ammor O, Meknassi M. CVDNet: A novel Available from: http://arxiv.org/abs/2003.13865 [Last
deep learning architecture for detection of coronavirus accessed on 2021 Apr 09].
(Covid-19) from chest x-ray images. Chaos Solitons Fractals. 36. Cohen JP. GitHub; 2020. Available from: https://github.com/
2020;140:110245. ieee8023/covid-chestxray-dataset [Last accessed on 2021
Apr 09].
doi: 10.1016/j.chaos.2020.110245
37. Chest X-Ray Images (Pneumonia). Available from: https://
26. Ayan E, Ünver HM. Diagnosis of Pneumonia from Chest
X-Ray Images Using Deep Learning. Istanbul, Turkey: kaggle.com/paultimothymooney/chest-xray-pneumonia
Scientific Meeting on Electrical-Electronics and Biomedical [Last accessed on Apr 09].
Engineering and Computer Science (EBBT); 2019. p. 1-5. 38. He K, Zhang X, Ren S, Sun J. Deep Residual Learning for
Image Recognition. 2016 IEEE Conference on Computer
doi: 10.1109/EBBT.2019.8741582
Vision and Pattern Recognition (CVPR); 2016. p. 770-778.
27. Asnaoui, Khalid El, Chawki Y, Idri A. Automated Methods doi: 10.1109/cvpr.2016.90
for Detection and Classification Pneumonia based on
X-Ray Images Using Deep Learning. arXiv. Ithaca: Cornell 39. Hu J, Shen L, Albanie S, Sun G, Wu E. Squeeze-and-
University; 2020. Excitation Networks; 2017.
doi: 10.48550/arxiv.2003.14363 doi: 10.48550/arxiv.1709.01507
28. Elshennawy NM, Ibrahim DM. Deep-pneumonia 40. Xie S, Girshick R, Dollár P, Tu Z, He K. Aggregated Residual
framework using deep learning models based on chest X-ray Transformations for Deep Neural Networks. Honolulu, HI,
images. Diagnostics. 2020;10(9):649. USA: IEEE Conference on Computer Vision and Pattern
Recognition (CVPR); 2017. p. 5987-5995.
doi: 10.3390/diagnostics10090649
doi: 10.1109/CVPR.2017.634
29. Ibrahim AU, Ozsoz M, Serte S, Al-Turjman F, Yakoi PS.
Pneumonia classification using deep learning from 41. Simonyan K, Vedaldi A, Zisserman A. Deep Inside
chest X-ray images during COVID-19. Cogn Comput. Convolutional Networks: Visualising Image Classification
2021;16:1589-1601. Models and Saliency Maps; 2013.
doi: 10.1007/s12559-020-09787-5 doi: 10.48550/arXiv.1312.6034
30. Kundu R, Das R, Geem ZW, Han GT, Sarkar R. Pneumonia 42. Tan M, Le QV. EfficientNet: Rethinking Model Scaling for
detection in chest X-ray images using an ensemble of deep Convolutional Neural Networks; 2019.
learning models. PLoS One. 2021;16(9):e0256630. doi: 10.48550/arXiv.1905.11946
doi: 10.1371/journal.pone.0256630 43. Simon M, Rodner E, Denzler J. ImageNet Pre-trained
Models with Batch Normalization; 2016.
31. Podder P, Alam FB, Mondal MR, Hasan MJ, Rohan A,
Bharati S. Rethinking densely connected convolutional doi: 10.48550/arXiv.1612.01452
Volume 2 Issue 1 (2025) 40 doi: 10.36922/aih.2888

