Page 29 - AIH-2-3
P. 29
Artificial Intelligence in Health AI in embryo selection for ART
doi: 10.1007/978-3-030-59722-1_3 doi: 10.1093/humrep/dead093.266
97. Mushtaq A, Mumtaz M, Raza A, Salem N, Yasir MN. Artificial 102. Ahlström A, Berntsen J, Johansen M, et al. Correlations
intelligence-based detection of human embryo components between a deep learning-based algorithm for embryo
for assisted reproduction by in vitro fertilization. Sensors. evaluation with cleavage-stage cell numbers and
2022;22(19):7418. fragmentation. Reprod Biomed Online. 2023;47(6):103408.
doi: 10.3390/s22197418 doi: 10.1016/j.rbmo.2023.103408
98. Allahbadia GN. Embryo transfer is the last frontier for deep 103. Nasr M, Mohamed M, Shehata L. Artificial intelligence in
machine learning artificial intelligence in medically assisted assisted reproductive technology review. Int J Progress Sci
reproduction (MAR). J Reprod. 2023;2(1):18. Technol. 2021;25:507-11.
doi: 10.58779/issn.2954-467X.tjor2023.v2.n1.18 104. Barrie A, Homburg R, McDowell G, Brown J, Kingsland C,
99. Liu R, Bai S, Jiang X, et al. Multifactor prediction of embryo Troup S. Examining the efficacy of six published time-
transfer outcomes based on a machine learning algorithm. lapse imaging embryo selection algorithms to predict
Front Endocrinol (Lausanne). 2021;12:745039. implantation to demonstrate the need for the development
doi: 10.3389/fendo.2021.745039 of specific, in-house morphokinetic selection algorithms.
Fertil Steril. 2017;107(3):613-621.
100. Curchoe CL, Bormann CL. Artificial intelligence and
machine learning for human reproduction and embryology doi: 10.1016/j.fertnstert.2016.11.014
presented at ASRM and ESHRE 2018. J Assist Reprod Genet. 105. Fitz VW, Kanakasabapathy MK, Thirumalaraju P, et al.
2019;36(4):591-600. Should there be an “AI” in TEAM? Embryologists selection
doi: 10.1007/s10815-019-01408-x of high implantation potential embryos improves with the
aid of an artificial intelligence algorithm. J Assist Reprod
101. Mills C, Johnston M, Koplin J. O-220 Artificial intelligence
for embryo selection: Ethical, social and regulatory issues. Genet. 2021;38(10):2663-2670.
Hum Reprod. 2023;38(Suppl 1):dead093.266. doi: 10.1007/s10815-021-02318-7
Volume 2 Issue 3 (2025) 23 https://doi.org/10.36922/aih.7170

