Page 29 - AIH-2-3
P. 29

Artificial Intelligence in Health                                           AI in embryo selection for ART



               doi: 10.1007/978-3-030-59722-1_3                   doi: 10.1093/humrep/dead093.266
            97.  Mushtaq A, Mumtaz M, Raza A, Salem N, Yasir MN. Artificial   102. Ahlström A, Berntsen J, Johansen M,  et  al. Correlations
               intelligence-based detection of human embryo components   between a  deep learning-based algorithm for  embryo
               for assisted reproduction by in vitro fertilization. Sensors.   evaluation with cleavage-stage cell numbers and
               2022;22(19):7418.                                  fragmentation. Reprod Biomed Online. 2023;47(6):103408.
               doi: 10.3390/s22197418                             doi: 10.1016/j.rbmo.2023.103408
            98.  Allahbadia GN. Embryo transfer is the last frontier for deep   103. Nasr M, Mohamed M, Shehata L. Artificial intelligence in
               machine learning artificial intelligence in medically assisted   assisted reproductive technology review. Int J Progress Sci
               reproduction (MAR). J Reprod. 2023;2(1):18.        Technol. 2021;25:507-11.
               doi: 10.58779/issn.2954-467X.tjor2023.v2.n1.18  104. Barrie A, Homburg R, McDowell G, Brown J, Kingsland C,
            99.  Liu R, Bai S, Jiang X, et al. Multifactor prediction of embryo   Troup S. Examining the efficacy of six published time-
               transfer outcomes based on a machine learning algorithm.   lapse imaging embryo selection algorithms to predict
               Front Endocrinol (Lausanne). 2021;12:745039.       implantation to demonstrate the need for the development
               doi: 10.3389/fendo.2021.745039                     of specific, in-house morphokinetic selection algorithms.
                                                                  Fertil Steril. 2017;107(3):613-621.
            100. Curchoe CL, Bormann CL. Artificial intelligence and
               machine learning for human reproduction and embryology      doi: 10.1016/j.fertnstert.2016.11.014
               presented at ASRM and ESHRE 2018. J Assist Reprod Genet.   105. Fitz VW, Kanakasabapathy MK, Thirumalaraju P,  et al.
               2019;36(4):591-600.                                Should there be an “AI” in TEAM? Embryologists selection
               doi: 10.1007/s10815-019-01408-x                    of high implantation potential embryos improves with the
                                                                  aid of  an artificial intelligence  algorithm.  J  Assist Reprod
            101. Mills C, Johnston M, Koplin J. O-220  Artificial intelligence
               for embryo selection: Ethical, social and regulatory issues.   Genet. 2021;38(10):2663-2670.
               Hum Reprod. 2023;38(Suppl 1):dead093.266.          doi: 10.1007/s10815-021-02318-7













































            Volume 2 Issue 3 (2025)                         23                        https://doi.org/10.36922/aih.7170
   24   25   26   27   28   29   30   31   32   33   34