Page 26 - AIH-2-3
P. 26

Artificial Intelligence in Health                                           AI in embryo selection for ART



               doi: 10.1007/s43032-022-01071-1                    1977. p. 33-51.
            31.  Patil S, Madiwalar S, Aparanji V. Machine learning techniques      doi: 10.1007/978-1-4615-8804-7_5
               to improve the success rate in  in-vitro fertilization (IVF)   41.  Jurisica I, Mylopoulos J, Glasgow J, Shapiro H, Casper RF.
               procedure. IOP Conf Ser Mater Sci Eng. 2020;925:012039.  Case-based reasoning in IVF: Prediction and knowledge
               doi: 10.1088/1757-899X/925/1/012039                mining. Artif Intell Med. 1998;12(1):1-24.
            32.  Giscard d’Estaing S, Labrune E, Forcellini M,  et  al.      doi: 10.1016/S0933-3657(97)00037-7
               A machine learning system with reinforcement capacity for   42.  Bing Y, Ouellette RJ. Fertilization in vitro. Methods Mol Biol.
               predicting the fate of an ART embryo. Syst Biol Reprod Med.   2009;550:251-266.
               2021;67(1):64-78.
                                                                  doi: 10.1007/978-1-60327-009-0_16
               doi: 10.1080/19396368.2020.1822953
                                                               43.  In Vitro Fertilization (IVF). In: The SAGE Encyclopedia of
            33.  Kanakasabapathy MK, Thirumalaraju P, Bormann CL, et al.   Children and Childhood Studies. London: SAGE Publications,
               Development and evaluation of inexpensive automated   Inc.; 2020.
               deep learning-based imaging systems for embryology. Lab
               Chip. 2019;19(24):4139-4145.                       doi: 10.4135/9781529714388.n344
               doi: 10.1039/C9LC00721K                         44.  Reljič M, Knez J, Kovač V, Kovačič B. Endometrial injury,
                                                                  the quality of embryos, and blastocyst transfer are the most
            34.  Pons MC, Carrasco B, Rives N, et al. Predicting the likelihood   important prognostic factors for in vitro fertilization success
               of  live  birth:  An  objective  and  user-friendly  blastocyst   after  previous  repeated  unsuccessful  attempts.  J  Assist
               grading system. Reprod Biomed Online. 2023;47(3):103243.  Reprod Genet. 2017;34(6):775-779.
               doi: 10.1016/j.rbmo.2023.05.015                    doi: 10.1007/s10815-017-0916-4
            35.  Bori  L,  Gimenez  C,  Clark  G,  Babariya  D,  Wells  D,   45.  Aflatoonian A, Asgharnia M. Factors affecting the successful
               Meseguer M. O-323   Sex-dependent discrepancies in   embryo transfer. IJRM. 2006;4(2):45-50.
               automatic scoring: Implications for the performance of
               embryo evaluation and selection methods.  Hum Reprod.   46.  Zheng D, Zeng L, Yang R,  et al. Intracytoplasmic sperm
               2024;39(Suppl 1):deae108.380.                      injection  (ICSI)  versus  conventional  in vitro  fertilisation
                                                                  (IVF) in couples with non-severe male infertility (NSMI-
               doi: 10.1093/humrep/deae108.380                    ICSI): Protocol for a multicentre randomised controlled
                                                                  trial. BMJ Open. 2019;9(9):e030366.
            36.  Valera MÁ, Conversa L, Murria L, Bori L, Garg A,
               Meseguer  M.  P-174  Do  culture  conditions  alter  the      doi: 10.1136/bmjopen-2019-030366
               efficacy of embryo selection algorithms using time-lapse   47.  Hardy K, Wright C, Rice S,  et al. Future developments
               technology? Development of novel embryo selection model   in assisted reproduction in humans.  Reproduction.
               with embryos cultured in different conditions. Hum Reprod.   2002;123(2):171-183.
               2023;38(Suppl 1):dead093.534.
                                                                  doi: 10.1530/rep.0.1230171
               doi: 10.1093/humrep/dead093.534
                                                               48.  Palermo GD, Sills ES, editors.  Intracytoplasmic Sperm
            37.  Sfontouris I, Nikiforaki D, Liarmakopoulou S,  et al.   Injection. Berlin: Springer International Publishing; 2018.
               P-280  Potential for improvement and current limitations
               of Artificial Intelligence (AI) for embryo selection:      doi: 10.1007/978-3-319-70497-5
               Analysis  of external  validation data.  Hum  Reprod.   49.  Simopoulou M,  Sfakianoudis K,  Tsioulou P,  et al.
               2022;37(Suppl 1):deac107.269.                      Risks in surrogacy considering the embryo: From the
               doi: 10.1093/humrep/deac107.269                    preimplantation to the gestational and neonatal period.
                                                                  Biomed Res Int. 2018;2018:1-9.
            38.  Fauser BCJM, Braat DDM. Assisted reproductive technology.
               In:  Textbook of Obstetrics and Gynaecology. Netherlands:      doi: 10.1155/2018/6287507
               Bohn Stafleu van Loghum; 2019. p. 263-282.      50.  Igreja AR, Ricou M. Surrogacy: Challenges and ambiguities.
               doi: 10.1007/978-90-368-2131-5_14                  New Bioethics. 2019;25(1):60-77.
            39.  Bhandari HM, Choudhary MK, Stewart JA. An overview      doi: 10.1080/20502877.2019.1564007
               of assisted reproductive technology procedures.  Obstet   51.  van den Akker OBA. Introduction to surrogacy: Historical
               Gynaecol. 2018;20(3):167-176.                      and present day context. In: Surrogate Motherhood Families.
               doi: 10.1111/tog.12509                             Berlin: Springer International Publishing; 2017. p. 5-37.
                                                                  doi: 10.1007/978-3-319-60453-4_1
            40.  Gwatkin RBL. Fertilization  in vitro. In:  Fertilization
               Mechanisms in Man and Mammals. Berlin: Springer US;   52.  Patel N, Jadeja Y, Bhadarka H, Patel M, Patel N, Sodagar N.


            Volume 2 Issue 3 (2025)                         20                        https://doi.org/10.36922/aih.7170
   21   22   23   24   25   26   27   28   29   30   31