Page 25 - AIH-2-3
P. 25

Artificial Intelligence in Health                                           AI in embryo selection for ART



               doi: 10.1016/j.fertnstert.2012.03.013              doi: 10.1007/s10815-022-02708-5
            11.  Polanski LT, Coelho Neto MA, Nastri CO, et al. Time‐lapse   21.  Salih M, Austin C, Warty RR, et al. Embryo selection through
               embryo imaging for improving reproductive outcomes:   artificial intelligence versus embryologists: A  systematic
               Systematic review and meta‐analysis.  Ultrasound Obstet   review. Hum Reprod Open. 2023;2023(3):hoad031.
               Gynecol. 2014;44(4):394-401.
                                                                  doi: 10.1093/hropen/hoad031
               doi: 10.1002/uog.13428
                                                               22.  Tian T, Kong F, Yang R, et al. A Bayesian network model
            12.  Bormann CL, Curchoe CL, Thirumalaraju P,  et al. Deep   for prediction of low or failed fertilization in assisted
               learning early warning system for embryo culture conditions   reproductive technology based on a large clinical real-world
               and embryologist performance in the ART laboratory.   data. Reprod Biol Endocrinol. 2023;21(1):8.
               J Assist Reprod Genet. 2021;38(7):1641-1646.
                                                                  doi: 10.1186/s12958-023-01065-x
               doi: 10.1007/s10815-021-02198-x
                                                               23.  Ueno S, Berntsen J, Okimura T, Kato K. Improved pregnancy
            13.  Fernandez EI, Ferreira AS, Cecílio MHM,  et al. Artificial   prediction performance in an updated deep-learning
               intelligence in  the  IVF  laboratory:  Overview through   embryo selection model: A  retrospective independent
               the  application  of  different  types  of  algorithms  for the   validation study. Reprod Biomed Online. 2024;48(1):103308.
               classification  of reproductive  data.  J  Assist Reprod Genet.      doi: 10.1016/j.rbmo.2023.103308
               2020;37(10):2359-2376.
                                                               24.  Berntsen J, Rimestad J, Lassen JT, Tran D, Kragh MF. Robust
               doi: 10.1007/s10815-020-01881-9
                                                                  and generalizable embryo selection based on artificial
            14.  Zaninovic N, Rosenwaks Z. Artificial intelligence in   intelligence and time-lapse image sequences.  PLoS One.
               human  in vitro fertilization and embryology.  Fertil Steril.   2022;17(2):e0262661.
               2020;114(5):914-920.
                                                                  doi: 10.1371/journal.pone.0262661
               doi: 10.1016/j.fertnstert.2020.09.157
                                                               25.  Chen L, Li W, Liu Y,  et al. Non-invasive embryo selection
            15.  McKenzie JE, Beller EM, Forbes AB. Introduction to   strategy for clinical IVF to avoid wastage of potentially
               systematic reviews and meta‐analysis.  Respirology.   competent embryos. Reprod Biomed Online. 2022;45(1):26-34.
               2016;21(4):626-637.
                                                                  doi: 10.1016/j.rbmo.2022.03.006
               doi: 10.1111/resp.12783
                                                               26.  Xi Q, Yang Q, Wang M, et al. Individualized embryo selection
            16.  Theilgaard Lassen J, Fly Kragh M, Rimestad J, Nygård   strategy developed by stacking machine learning model for
               Johansen M, Berntsen J. Development and validation of   better in vitro fertilization outcomes: An application study.
               deep learning based embryo selection across multiple days   Reprod Biol Endocrinol. 2021;19(1):53.
               of transfer. Sci Rep. 2023;13(1):4235.
                                                                  doi: 10.1186/s12958-021-00734-z
               doi: 10.1038/s41598-023-31136-3
                                                               27.  Ratna MB, Bhattacharya S, McLernon DJ. External
            17.  Cimadomo D, Chiappetta V, Innocenti F,  et al. Towards   validation of models for predicting cumulative live birth
               automation in IVF: Pre-clinical validation of a deep learning-  over multiple complete cycles  of IVF treatment.  Hum
               based embryo grading system during PGT-A cycles. J Clin   Reprod. 2023;38(10):1998-2010.
               Med. 2023;12(5):1806.
                                                                  doi: 10.1093/humrep/dead165
               doi: 10.3390/jcm12051806
                                                               28.  Diakiw SM, Hall JMM, VerMilyea MD, et al. Development of
            18.  Johansen MN, Parner ET, Kragh MF,  et al. Comparing   an artificial intelligence model for predicting the likelihood
               performance between clinics of an embryo evaluation   of human embryo euploidy based on blastocyst images
               algorithm based on time-lapse images and machine   from multiple imaging systems during IVF.  Hum Reprod.
               learning. J Assist Reprod Genet. 2023;40(9):2129-2137.  2022;37(8):1746-1759.
               doi: 10.1007/s10815-023-02871-3                    doi: 10.1093/humrep/deac131
            19.  Bori L, Meseguer F, Valera MA, Galan A, Remohi J,   29.  Sawada Y, Sato T, Nagaya M,  et al. Evaluation of artificial
               Meseguer  M. The higher the score, the better the clinical   intelligence using time-lapse images of IVF embryos to
               outcome: Retrospective evaluation of automatic embryo   predict live birth. Reprod Biomed Online. 2021;43(5):843-852.
               grading as a support tool for embryo selection in IVF      doi: 10.1016/j.rbmo.2021.05.002
               laboratories. Hum Reprod. 2022;37(6):1148-1160.
                                                               30.  Cheredath A, Uppangala S, Asha CS, et al. Combining
               doi: 10.1093/humrep/deac066
                                                                  machine learning with metabolomic and embryologic data
            20.  Glatstein I, Chavez-Badiola A, Curchoe CL. New frontiers in   improves embryo implantation prediction.  Reprod Sci.
               embryo selection. J Assist Reprod Genet. 2023;40(2):223-234.  2023;30(3):984-994.


            Volume 2 Issue 3 (2025)                         19                        https://doi.org/10.36922/aih.7170
   20   21   22   23   24   25   26   27   28   29   30