Page 25 - AIH-2-3
P. 25
Artificial Intelligence in Health AI in embryo selection for ART
doi: 10.1016/j.fertnstert.2012.03.013 doi: 10.1007/s10815-022-02708-5
11. Polanski LT, Coelho Neto MA, Nastri CO, et al. Time‐lapse 21. Salih M, Austin C, Warty RR, et al. Embryo selection through
embryo imaging for improving reproductive outcomes: artificial intelligence versus embryologists: A systematic
Systematic review and meta‐analysis. Ultrasound Obstet review. Hum Reprod Open. 2023;2023(3):hoad031.
Gynecol. 2014;44(4):394-401.
doi: 10.1093/hropen/hoad031
doi: 10.1002/uog.13428
22. Tian T, Kong F, Yang R, et al. A Bayesian network model
12. Bormann CL, Curchoe CL, Thirumalaraju P, et al. Deep for prediction of low or failed fertilization in assisted
learning early warning system for embryo culture conditions reproductive technology based on a large clinical real-world
and embryologist performance in the ART laboratory. data. Reprod Biol Endocrinol. 2023;21(1):8.
J Assist Reprod Genet. 2021;38(7):1641-1646.
doi: 10.1186/s12958-023-01065-x
doi: 10.1007/s10815-021-02198-x
23. Ueno S, Berntsen J, Okimura T, Kato K. Improved pregnancy
13. Fernandez EI, Ferreira AS, Cecílio MHM, et al. Artificial prediction performance in an updated deep-learning
intelligence in the IVF laboratory: Overview through embryo selection model: A retrospective independent
the application of different types of algorithms for the validation study. Reprod Biomed Online. 2024;48(1):103308.
classification of reproductive data. J Assist Reprod Genet. doi: 10.1016/j.rbmo.2023.103308
2020;37(10):2359-2376.
24. Berntsen J, Rimestad J, Lassen JT, Tran D, Kragh MF. Robust
doi: 10.1007/s10815-020-01881-9
and generalizable embryo selection based on artificial
14. Zaninovic N, Rosenwaks Z. Artificial intelligence in intelligence and time-lapse image sequences. PLoS One.
human in vitro fertilization and embryology. Fertil Steril. 2022;17(2):e0262661.
2020;114(5):914-920.
doi: 10.1371/journal.pone.0262661
doi: 10.1016/j.fertnstert.2020.09.157
25. Chen L, Li W, Liu Y, et al. Non-invasive embryo selection
15. McKenzie JE, Beller EM, Forbes AB. Introduction to strategy for clinical IVF to avoid wastage of potentially
systematic reviews and meta‐analysis. Respirology. competent embryos. Reprod Biomed Online. 2022;45(1):26-34.
2016;21(4):626-637.
doi: 10.1016/j.rbmo.2022.03.006
doi: 10.1111/resp.12783
26. Xi Q, Yang Q, Wang M, et al. Individualized embryo selection
16. Theilgaard Lassen J, Fly Kragh M, Rimestad J, Nygård strategy developed by stacking machine learning model for
Johansen M, Berntsen J. Development and validation of better in vitro fertilization outcomes: An application study.
deep learning based embryo selection across multiple days Reprod Biol Endocrinol. 2021;19(1):53.
of transfer. Sci Rep. 2023;13(1):4235.
doi: 10.1186/s12958-021-00734-z
doi: 10.1038/s41598-023-31136-3
27. Ratna MB, Bhattacharya S, McLernon DJ. External
17. Cimadomo D, Chiappetta V, Innocenti F, et al. Towards validation of models for predicting cumulative live birth
automation in IVF: Pre-clinical validation of a deep learning- over multiple complete cycles of IVF treatment. Hum
based embryo grading system during PGT-A cycles. J Clin Reprod. 2023;38(10):1998-2010.
Med. 2023;12(5):1806.
doi: 10.1093/humrep/dead165
doi: 10.3390/jcm12051806
28. Diakiw SM, Hall JMM, VerMilyea MD, et al. Development of
18. Johansen MN, Parner ET, Kragh MF, et al. Comparing an artificial intelligence model for predicting the likelihood
performance between clinics of an embryo evaluation of human embryo euploidy based on blastocyst images
algorithm based on time-lapse images and machine from multiple imaging systems during IVF. Hum Reprod.
learning. J Assist Reprod Genet. 2023;40(9):2129-2137. 2022;37(8):1746-1759.
doi: 10.1007/s10815-023-02871-3 doi: 10.1093/humrep/deac131
19. Bori L, Meseguer F, Valera MA, Galan A, Remohi J, 29. Sawada Y, Sato T, Nagaya M, et al. Evaluation of artificial
Meseguer M. The higher the score, the better the clinical intelligence using time-lapse images of IVF embryos to
outcome: Retrospective evaluation of automatic embryo predict live birth. Reprod Biomed Online. 2021;43(5):843-852.
grading as a support tool for embryo selection in IVF doi: 10.1016/j.rbmo.2021.05.002
laboratories. Hum Reprod. 2022;37(6):1148-1160.
30. Cheredath A, Uppangala S, Asha CS, et al. Combining
doi: 10.1093/humrep/deac066
machine learning with metabolomic and embryologic data
20. Glatstein I, Chavez-Badiola A, Curchoe CL. New frontiers in improves embryo implantation prediction. Reprod Sci.
embryo selection. J Assist Reprod Genet. 2023;40(2):223-234. 2023;30(3):984-994.
Volume 2 Issue 3 (2025) 19 https://doi.org/10.36922/aih.7170

