Page 28 - AIH-2-3
P. 28
Artificial Intelligence in Health AI in embryo selection for ART
Technol. 2024;4:276-279. Methods Mol Biol. 2014;1154:171-231.
doi: 10.48175/IJARSCT-19939 doi: 10.1007/978-1-4939-0659-8_8
75. Lin J, Sun XX. Predictive modeling in reproductive 86. Prostate pathophysiology. In: Atlas of Clinical Andrology.
medicine. Reprod Dev Med. 2018;2(4):224-229. United States: CRC Press; 2005. p. 146-157.
doi: 10.4103/2096-2924.249888 doi: 10.1201/b14619-17
76. Rosenwaks Z. Artificial intelligence in reproductive 87. Kragh MF, Karstoft H. Embryo selection with artificial
medicine: A fleeting concept or the wave of the future? Fertil intelligence: How to evaluate and compare methods? J Assist
Steril. 2020;114(5):905-907. Reprod Genet. 2021;38(7):1675-1689.
doi: 10.1016/j.fertnstert.2020.10.002 doi: 10.1007/s10815-021-02254-6
77. Raimundo J, Cabrita P. Artificial intelligence at 88. Merican ZZ, Yusof UK, Abdullah NL. Review on Embryo
assisted reproductive technology. Procedia Comput Sci. Selection Based on Morphology Using Machine Learning
2021;181:442-447. Methods; 2021. Available from: https://api.semanticscholar.
org/corpusid:236880800 [Last accessed on 2025 Apr 28].
doi: 10.1016/j.procs.2021.01.189
89. Medenica S, Zivanovic D, Batkoska L, et al. The future is
78. Dimitriadis I, Zaninovic N, Badiola AC, Bormann CL.
Artificial intelligence in the embryology laboratory: coming: Artificial intelligence in the treatment of infertility
A review. Reprod Biomed Online. 2022;44(3):435-448. could improve assisted reproduction outcomes-the value of
regulatory frameworks. Diagnostics. 2022;12(12):2979.
doi: 10.1016/j.rbmo.2021.11.003
doi: 10.3390/diagnostics12122979
79. Afnan MAM, Liu Y, Conitzer V, et al. Interpretable, not 90. Curchoe CL. Meetings that matter: Time to put artificial
black-box, artificial intelligence should be used for embryo intelligence on the ART roadmap. J Assist Reprod Genet.
selection. Hum Reprod Open. 2021;2021(4):hoab040.
2022;39(7):1493-1496.
doi: 10.1093/hropen/hoab040
doi: 10.1007/s10815-022-02520-1
80. Benchaib M, Labrune E, Giscard d’Estaing S, Salle B,
Lornage J. Shallow artificial networks with morphokinetic 91. Tran HP, Tran LNH, Dang HT, et al. A SWOT analysis of
human- and machine learning- based embryo assessment.
time‐lapse parameters coupled to ART data allow to predict IEEE Access. 2020;8:227466-227481.
live birth. Reprod Med Biol. 2022;21(1):e12486.
doi: 10.1109/ACCESS.2020.3045772
doi: 10.1002/rmb2.12486
92. Kuo C, Zuo J, Han W, et al. Intelligent Assisted Reproduction:
81. Yu L, Lam KKW, Ng EHY, et al. Deep Learning-Based Innovative Applications of artificial Intelligence in Embryo
Embryo Assessment of Static Images can Reduce the Time to
Live Birth in In Vitro Fertilization. medRxiv [Preprint]; 2024. Health Assessment. Authorea [Preprints]; 2025.
doi: 10.22541/au.173639046.67662628/v1
doi: 10.1101/2024.10.28.24316259
93. Presacan O, Dorobanțiu A, Thambawita V, et al. Embryo 2.0:
82. Liao Z, Yan C, Wang J, et al. A clinical consensus-compliant Merging Synthetic and Real Data for Advanced AI Predictions
deep learning approach to quantitatively evaluate human [Preprint]; 2024.
in vitro fertilization early embryonic development with
optical microscope images. Artif Intell Med. 2024;149:102773. doi: 10.48550/arxiv.2412.01255
doi: 10.1016/j.artmed.2024.102773 94. Kaveh S, Ghafari A, Khedri Z, et al. Investigating the Artificial
Intelligence in Prediction and Evaluation of Sperm and
83. Popa T, He C, Vasconcelos F, et al. P-168 Both artificial Embryo Quality in In Vitro Fertilization (IVF): A Systematic
intelligence and manual embryo selection methods show Review. [Preprint (Version 1)]; 2024. [Last accessed on 2025
sex-bias, favouring male embryos-insights from the largest Apr 28].
embryo sex study using time-lapse and PGT-A. Hum
Reprod. 2024;39(Suppl 1):deae108.539. doi: 10.21203/rs.3.rs-5504223/v1
doi: 10.1093/humrep/deae108.539 95. Embryo Ranking Intelligent Classification Algorithm. C. to,
“Embryo Ranking Intelligent Classification Algorithm; 2020.
84. Illingworth PJ, Venetis C, Gardner DK, et al. Deep learning Available from: https://en.wikipedia.org/wiki/embryo_
versus manual morphology-based embryo selection in IVF: ranking_intelligent_classification_algorithm? [Last accessed
A randomized, double-blind noninferiority trial. Nat Med. on 2025 Feb 19].
2024;30(11):3114-3120.
96. Leahy B, Jang WD, Yang H, et al. Automated Measurements
doi: 10.1038/s41591-024-03166-5
of Key Morphological Features of Human Embryos for IVF.
85. Huang JYJ, Rosenwaks Z. Assisted reproductive techniques. Med Image Comput Comput Assist Interv. 2020:12265:25-35.
Volume 2 Issue 3 (2025) 22 https://doi.org/10.36922/aih.7170

