Page 67 - AIH-2-3
P. 67
Artificial Intelligence in Health AI in medical diagnostics: A multi-disease approach
United States: IEEE; 2024. p. 1-6. 2024;20(8):960-973.
50. Gordon ER, Trager MH, Kontos D, et al. Ethical doi: 10.1038/s41589-024-01679-1
considerations for artificial intelligence in dermatology: 61. AI Could Make Health Care Fairer-by Helping us believe
A scoping review. Br J Dermatol. 2024;190:789-797.
what Patients Say. MIT Technology Review; 2023.
doi: 10.1093/bjd/ljae040 62. Udegbe FC, Ebulue OR, Ebulue CC, Ekesiobi CS.
51. Yadav R, Bhat A. A Survey on Skin Lesion Detection Synthetic Biology and its Potential in US Medical
and Classification using ML. In: 2024 2 International Therapeutics: A Comprehensive Review: Exploring the
nd
Conference on Artificial Intelligence and ML Applications Cutting-edge Intersections of Biology and Engineering
Theme: Healthcare and Internet of Things (AIMLA). United in Drug Development and Treatments. Eng Sci Technol J.
States: IEEE; 2024. p. 1-5. 2024;5(4):1395-1414.
doi: 10.1109/aimla59606.2024.10531571 63. Stevens S, Wu J, Thompson MJ, et al. Bioclip: A Vision
Foundation Model for the Tree of Life. In: Proceedings of
52. Klarycki J, Tomczyk K, Podgórska D, et al. AI in dermatology: the IEEE/CVF Conference on Computer Vision and Pattern
Bridging the gap between potential and practice. J Educ Recognition; 2024. p. 19412-19424.
Health Sport. 2024;52:57-73.
64. Jeong H, Park S, Choi B, Yu CS, Hong JY, Jeong TY, Cho KH.
doi: 10.12775/jehs.2024.52.004
Machine learning-based water quality prediction using
53. Goshisht MK. Machine learning and deep learning in octennial in-situ Daphnia magna biological early warning
synthetic biology: Key architectures, applications, and system data. J Hazardous Mater. 2024;465:133196.
challenges. ACS omega. 2024;9(9):9921-9945.
doi: 10.1016/j.jhazmat.2023.133196
doi: 10.1021/acsomega.3c05913
65. Rood JE, Hupalowska A, Regev A. Toward a foundation
54. Noordijk B, Garcia Gomez ML, Ten Tusscher KH, De model of causal cell and tissue biology with a perturbation
Ridder D, Van Dijk AD, Smith RW. The rise of scientific cell and tissue atlas. Cell. 2024;187(17):4520-4545.
machine learning: A perspective on combining mechanistic 66. Shaban AS, Owda ME, Basuoni MM, Mousa MA,
modelling with machine learning for systems biology. Front Radwan AA, Saleh AK. Punica granatum peel extract
Syst Biol. 2024;41:407994.
mediated green synthesis of zinc oxide nanoparticles:
doi: 10.3389/fsysb.2024.1407994 Structure and evaluation of their biological applications.
55. Artificial Intelligence: 10 Promising Interventions for Biomass Convers Biorefin. 2024;14(11):12265-12281.
Healthcare. NIHR Evidence. National Institute for Health doi: 10.1007/s13399-022-03185-7
and Care Research; 2023.
67. DeGroat W, Abdelhalim H, Patel K, Mendhe D, Zeeshan S,
doi: 10.3310/nihrevidence_59502 Ahmed Z. Discovering biomarkers associated and
predicting cardiovascular disease with high accuracy using
56. Iacucci M, Parigi TL, Del Amor R, et al. Artificial intelligence
enabled histological prediction of remission or activity and a novel nexus of machine learning techniques for precision
clinical outcomes in ulcerative colitis. Gastroenterology. medicine. Sci Rep. 2024;14(1):1.
2023;164(7):1180-1188.e2. doi: 10.1038/s41598-023-50600-8
doi: 10.1053/j.gastro.2023.02.031 68. Martin SS, Aday AW, Almarzooq ZI, et al. 2024 heart
57. Kim HY, Cho GJ, Kwon HS. Applications of artificial disease and stroke statistics: A report of US and global
intelligence in obstetrics. Ultrasonography. 2023;42(1):2-9. data from the American Heart Association. Circulation.
2024;149(8):e347-e913.
doi: 10.14366/usg.22063
doi: 10.1161/CIR.0000000000001209
58. Saraf S, De A, Tripathy BK. Effective use of computational
biology and artificial intelligence in the domain of medical 69. Ogunpola A, Saeed F, Basurra S, Albarrak AM, Qasem SN.
oncology. In: Computational Intelligence for Oncology and Machine Learning-based predictive models for detection of
Neurological Disorders. United States: CRC Press; 2024. cardiovascular diseases. Diagnostics. 2024;14(2):144.
p. 228-252. doi: 10.3390/diagnostics14020144
59. Farhat F, Sohail SS, Alam MT, et al. COVID-19 and beyond: 70. Ogunpola A, Saeed F, Basurra S, Albarrak AM, Qasem SN.
leveraging artificial intelligence for enhanced outbreak Machine learning-based predictive models for detection of
control. Front Artif Intell. 2023;6:1266560. cardiovascular diseases. Diagnostics. 2024;14(2):144.
doi: 10.3389/frai.2023.1266560 doi: 10.3390/diagnostics14020144
60. Catacutan DB, Alexander J, Arnold A, Stokes JM. Machine 71. Terranova N, Venkatakrishnan K. Machine learning in
learning in preclinical drug discovery. Nat Chem Biol. modeling disease trajectory and treatment outcomes: An
Volume 2 Issue 3 (2025) 61 doi: 10.36922/aih.5173

