Page 67 - AIH-2-3
P. 67

Artificial Intelligence in Health                            AI in medical diagnostics: A multi-disease approach



               United States: IEEE; 2024. p. 1-6.                 2024;20(8):960-973.
            50.  Gordon ER, Trager MH, Kontos D,  et al. Ethical      doi: 10.1038/s41589-024-01679-1
               considerations for artificial intelligence in dermatology:   61.  AI Could Make Health Care Fairer-by Helping us believe
               A scoping review. Br J Dermatol. 2024;190:789-797.
                                                                  what Patients Say. MIT Technology Review; 2023.
               doi: 10.1093/bjd/ljae040                        62.  Udegbe FC, Ebulue OR, Ebulue CC, Ekesiobi CS.
            51.  Yadav R, Bhat A. A  Survey on Skin Lesion Detection   Synthetic  Biology  and  its  Potential  in  US  Medical
               and Classification using ML. In:  2024  2   International   Therapeutics: A  Comprehensive Review: Exploring the
                                               nd
               Conference on Artificial Intelligence and ML Applications   Cutting-edge Intersections of Biology and Engineering
               Theme: Healthcare and Internet of Things (AIMLA). United   in Drug Development and Treatments.  Eng Sci Technol J.
               States: IEEE; 2024. p. 1-5.                        2024;5(4):1395-1414.
               doi: 10.1109/aimla59606.2024.10531571           63.  Stevens S, Wu J, Thompson MJ,  et al. Bioclip: A  Vision
                                                                  Foundation Model for the Tree of Life. In:  Proceedings of
            52.  Klarycki J, Tomczyk K, Podgórska D, et al. AI in dermatology:   the IEEE/CVF Conference on Computer Vision and Pattern
               Bridging the gap between potential and practice.  J  Educ   Recognition; 2024. p. 19412-19424.
               Health Sport. 2024;52:57-73.
                                                               64.  Jeong H, Park S, Choi B, Yu CS, Hong JY, Jeong TY, Cho KH.
               doi: 10.12775/jehs.2024.52.004
                                                                  Machine learning-based water quality prediction using
            53.  Goshisht MK. Machine learning and deep learning in   octennial in-situ Daphnia magna biological early warning
               synthetic biology: Key architectures, applications, and   system data. J Hazardous Mater. 2024;465:133196.
               challenges. ACS omega. 2024;9(9):9921-9945.
                                                                  doi: 10.1016/j.jhazmat.2023.133196
               doi: 10.1021/acsomega.3c05913
                                                               65.  Rood JE, Hupalowska A, Regev A. Toward a foundation
            54.  Noordijk B, Garcia Gomez ML, Ten Tusscher KH, De   model of causal cell and tissue biology with a perturbation
               Ridder D, Van Dijk AD, Smith RW. The rise of scientific   cell and tissue atlas. Cell. 2024;187(17):4520-4545.
               machine learning: A perspective on combining mechanistic   66.  Shaban AS, Owda ME, Basuoni MM, Mousa MA,
               modelling with machine learning for systems biology. Front   Radwan  AA, Saleh AK.  Punica granatum peel extract
               Syst Biol. 2024;41:407994.
                                                                  mediated green synthesis of zinc oxide nanoparticles:
               doi: 10.3389/fsysb.2024.1407994                    Structure and evaluation of their biological applications.
            55.  Artificial  Intelligence:  10  Promising  Interventions  for   Biomass Convers Biorefin. 2024;14(11):12265-12281.
               Healthcare. NIHR Evidence. National Institute for Health      doi: 10.1007/s13399-022-03185-7
               and Care Research; 2023.
                                                               67.  DeGroat W, Abdelhalim H, Patel K, Mendhe D, Zeeshan S,
               doi: 10.3310/nihrevidence_59502                    Ahmed Z. Discovering biomarkers associated and
                                                                  predicting cardiovascular disease with high accuracy using
            56.  Iacucci M, Parigi TL, Del Amor R, et al. Artificial intelligence
               enabled histological prediction of remission or activity and   a novel nexus of machine learning techniques for precision
               clinical  outcomes  in  ulcerative  colitis.  Gastroenterology.   medicine. Sci Rep. 2024;14(1):1.
               2023;164(7):1180-1188.e2.                          doi: 10.1038/s41598-023-50600-8
               doi: 10.1053/j.gastro.2023.02.031               68.  Martin SS, Aday AW, Almarzooq ZI,  et al. 2024 heart
            57.  Kim HY, Cho GJ, Kwon HS. Applications of artificial   disease and stroke statistics: A  report of US and global
               intelligence in obstetrics. Ultrasonography. 2023;42(1):2-9.  data from the American Heart Association.  Circulation.
                                                                  2024;149(8):e347-e913.
               doi: 10.14366/usg.22063
                                                                  doi: 10.1161/CIR.0000000000001209
            58.  Saraf S, De A, Tripathy BK. Effective use of computational
               biology and artificial intelligence in the domain of medical   69.  Ogunpola A, Saeed F, Basurra S, Albarrak AM, Qasem SN.
               oncology. In:  Computational Intelligence for Oncology and   Machine Learning-based predictive models for detection of
               Neurological Disorders. United States: CRC Press; 2024.   cardiovascular diseases. Diagnostics. 2024;14(2):144.
               p. 228-252.                                        doi: 10.3390/diagnostics14020144
            59.  Farhat F, Sohail SS, Alam MT, et al. COVID-19 and beyond:   70.  Ogunpola A, Saeed F, Basurra S, Albarrak AM, Qasem SN.
               leveraging artificial intelligence for enhanced outbreak   Machine learning-based predictive models for detection of
               control. Front Artif Intell. 2023;6:1266560.       cardiovascular diseases. Diagnostics. 2024;14(2):144.
               doi: 10.3389/frai.2023.1266560                     doi: 10.3390/diagnostics14020144
            60.  Catacutan DB, Alexander J, Arnold A, Stokes JM. Machine   71.  Terranova N, Venkatakrishnan K. Machine learning in
               learning in preclinical drug discovery.  Nat Chem Biol.   modeling disease  trajectory  and treatment outcomes:  An


            Volume 2 Issue 3 (2025)                         61                               doi: 10.36922/aih.5173
   62   63   64   65   66   67   68   69   70   71   72