Page 66 - AIH-2-3
P. 66

Artificial Intelligence in Health                            AI in medical diagnostics: A multi-disease approach



               approach to security with best practices and techniques. Int J   role of AI, ML, and DL in early heart disease prediction and
               Adv Netw Monit Controls. 2024;9(1):100-111.        treatment. In: 2024 International Conference on Electronics,
                                                                  Computing, Communication and Control Technology
               doi: 10.2478/ijanmc-2024-0010
                                                                  (ICECCC), Bengaluru, India; 2024. p. 1-6.
            30.  Akhtar ZB, Rawol AT. Uncovering cybersecurity
               vulnerabilities: A  kali linux investigative exploration      doi: 10.1109/ICECCC61767.2024.10593941
               perspective. Int J Adv Netw Monit Controls. 2024;9(2):11-22.  40.  He B, Kwan AC, Cho JH, et al. Blinded, randomized trial of
                                                                  sonographer versus AI cardiac function assessment. Nature.
               doi: 10.2478/ijanmc-2024-0012
                                                                  2023;616(7957):520-524.
            31.  Bin Akhtar Z. Artificial intelligence (AI) within manufacturing:
               An investigative exploration for opportunities, challenges,      doi: 10.1038/s41586-023-05947-3
               future directions. Metaverse. 2024;5(2):2731.   41.  Deo RC. Artificial intelligence and ML in cardiology.
                                                                  Circulation. 2024;149(16):1235-1237.
               doi: 10.54517/m.v5i2.2731
                                                                  doi: 10.1161/circulationaha.123.065469
            32.  Vayadande K, Bhosle AA, Pawar RG, Joshi DJ,
               Bailke PA, Lohade O. Innovative approaches for skin disease   42.  Bax M, Thorpe J, Romanov V. The future of personalized
               identification in ML: A  comprehensive study.  Oral Oncol   cardiovascular medicine demands 3D and 4D printing, stem
               Rep. 2024;10:100365-100365.                        cells, and artificial intelligence. Front Sens. 2023;4.
               doi: 10.1016/j.oor.2024.100365                     doi: 10.3389/fsens.2023.1294721
            33.  Lai C, Fuggle NR, Matin RN, Tanaka RJ, Rajan N. Artificial   43.  Alabdaljabar MS, Hasan B, Noseworthy PA, Maalouf JF,
               intelligence and ML in dermatological research and   Ammash NM, Hashmi SK. Machine learning in cardiology:
               healthcare: British society for investigative dermatology   A potential real-world solution in low-and middle-income
               skin club Report-Southampton April 2024. Br J Dermatol.   countries. J Multidiscip Healthc. 2023;16:285-295.
               2024;192:118-124.
                                                                  doi: 10.2147/jmdh.s383810
               doi: 10.1093/bjd/ljae395
                                                               44.  Rodríguez M, Córdova C, Benjumeda I, San Martín S.
            34.  Liu X, Duan C, Kim MK, Zhang L,  et  al.  Comparative   Automated  cervical  cancer  screening  using  single-cell
               Performance of Claude-3 Opus and ChatGPT-4 in      segmentation  and  deep  learning:  Enhanced  performance
               Dermoscopic Image Analysis for Melanoma Diagnosis. JMIR   with liquid-based cytology. Computation. 2024;12:232.
               Medical Informatics [Preprint]; 2024.
                                                                  doi: 10.3390/computation12120232
               doi: 10.2196/59273
                                                               45.  Vaickus LJ, Kerr DA, Torres JMV, Levy J. Artificial
            35.  Gassner  M,  Garcia  JB,  Tanadini-Lang  S,  et al.  Saliency-  intelligence applications in cytopathology: Current state of
               enhanced content-based image retrieval for diagnosis   the art. Surg Pathol Clin. 2024;17:521-531.
               support in dermatology consultation: Reader study.  JMIR      doi: 10.1016/j.path.2024.04.011
               Dermatol. 2023;6:e42129-e42129.
                                                               46.  Wu A, Ngo M, Thomas C. Assessment of patient perceptions
               doi: 10.2196/42129
                                                                  of artificial intelligence use in dermatology: A  cross‐
            36.  Komuro J, Kusumoto D, Hashimoto H, Yuasa S. Machine   sectional survey. Skin Res Technol. 2024;30(3):e13656.
               learning in cardiology: Clinical application and basic      doi: 10.1111/srt.13656
               research. J Cardiol. 2023;82(2):128-133.
                                                               47.  Tan IJ, Podwojniak A, Parikh A, Cohen BA. Precision
               doi: 10.1016/j.jjcc.2023.04.020
                                                                  dermatology: A  review  of  molecular  biomarkers and
            37.  Papachristou P, Söderholm M, Pallon J, et al. Evaluation of   personalized therapies.  Curr Issues Mol Biol.  2024;
               an artificial intelligence-based decision support for detection   46(4):2975-2990.
               of cutaneous melanoma in primary care-a prospective, real-     doi: 10.3390/cimb46040186
               life, clinical trial. Br J Dermatol. 2024;191:125-133.
                                                               48.  McMullen E, Grewal R, Storm K, et al. Diagnosing contact
               doi: 10.1093/bjd/ljae021
                                                                  dermatitis using machine learning: A  review.  Contact
            38.  Naser MA, Majeed AA, Alsabah M, Al-Shaikhli TR,   Dermatitis. 2024;91(3):186-189.
               Kaky KM. A review of ML’s role in cardiovascular disease      doi: 10.1111/cod.14595
               prediction: Recent advances and future challenges.
               Algorithms. 2024;17(2):78.                      49.  Kaushik P, Chopra Y, Kajla A, Poonia M, Khan A, Yadav
                                                                  D. AI-Powered Dermatology: Achieving Dermatologist-
               doi: 10.3390/a17020078
                                                                  Grade Skin Cancer Classification. In: 2024 IEEE International
            39.  Selvi DMK, Aswini J, Balakrishnan C, Suganya K, Sheena BG,   Conference on Interdisciplinary Approaches in Technology
               Subramanian RS. Revolutionizing cardiovascular care: The   and Management for Social Innovation (IATMSI). Vol.  2.


            Volume 2 Issue 3 (2025)                         60                               doi: 10.36922/aih.5173
   61   62   63   64   65   66   67   68   69   70   71