Page 151 - AIH-2-4
P. 151

Artificial Intelligence in Health                                 AI-driven personalized learning in residency



               doi: 10.3390/app15063103                        16.  Ejjami R. The adaptive personalization theory of learning:
                                                                  Revolutionizing education with AI.  J  Next Gener Res.
            7.   Lin  H,  Chen  Q.  Artificial  intelligence  (AI)  -integrated
               educational applications and college students’ creativity and   2024;1(1):1-18.
               academic emotions: Students and teachers’ perceptions and      doi: 10.70792/jngr5.0.v1i1.8
               attitudes. BMC Psychol. 2024;12(1):487.
                                                               17.  Baker R, Inventado PS.  Educational Data Mining and
               doi: 10.1186/s40359-024-01979-0                    Learning Analytics. Berlin: Springer; 2014. p. 61-75.
            8.   Zawacki-Richter O, Marín VI, Bond M, Gouverneur F.   18.  Corte-Real  A, Nunes  T, Caetano  C,  Almiro  PA.  Cone
               Systematic review of research on artificial intelligence   beam  computed  tomography  (CBCT)  technology  and
               applications in higher education - where are the educators?   learning outcomes in dental anatomy education: E-learning
               Int J Educ Technol Higher Educ. 2019;16(1):39.     approach. Anat Sci Educ. 2021;14(6):711-720.
               doi: 10.1186/s41239-019-0171-0                     doi: 10.1002/ase.2066
            9.   Sanchez-Gonzalez  M,  Terrell  M.  Flipped  classroom   19.  Herodotou C, Muirhead DK, Aristeidoua M, et al. Blended
               with artificial intelligence: Educational effectiveness of   and online learning: A  comparative study of virtual
               combining  voice-over  presentations  and  AI.  Cureus.   microscopy in higher education.  Interact Learn Environ.
               2023;15(11):e48354.                                2020;28(6):713-728.
               doi: 10.7759/cureus.48354                          doi: 10.1080/10494820.2018.1552874
            10.  Verghese BG, Iyer C, Borse T, Cooper S, White J, Sheehy R.   20.  Hatwalne  PA,  Chaudhary  SS,  Prayagi  SV,  Adkane  RV,
               Modern artificial intelligence and large language models in   Vairagade S.  Comparative investigation of BOPPPS-AI
               graduate medical education: A scoping review of attitudes,   Integrated Flipped Classroom Method and Conventional
               applications & practice. BMC Med Educ. 2025;25(1):730.
                                                                  Teaching Method in Mechanical Engineering Education.
               doi: 10.1186/s12909-025-07321-5                    United States: IEEE; 2024. p. 1-5.
            11.  Sriram A, Ramachandran K, Krishnamoorthy S. Artificial   21.  Mennella C, Maniscalco U, De Pietro G, Esposito M. Ethical
               intelligence in medical education: Transforming learning   and regulatory challenges of AI technologies in healthcare:
               and practice. Cureus. 2025;17(3):e80852.           A narrative review. Heliyon. 2024;10(4):e26297.
               doi: 10.7759/cureus.80852                          doi: 10.1016/j.heliyon.2024.e26297
            12.  Lee YM, Kim S, Lee YH,  et al. Defining medical AI   22.  Yaacoub A, Tarnpradab S, Khumprom  P,  Assaghir Z,
               competencies for medical school graduates: Outcomes of a   Prevost  L, Da-Rugna J.  Enhancing AI-Driven Education:
               delphi survey and medical student/educator questionnaire   Integrating Cognitive Frameworks, Linguistic Feedback
               of  South  Korean  medical  schools.  Acad Med.  2024;99(5):   Analysis, and Ethical Considerations for Improved Content
               524-533.                                           Generation. [arXiv Preprint]; 2025.
               doi: 10.1097/acm.0000000000005618               23.  Peng J, Shen W, Rao J, Lin J. Automated Bias Assessment in
            13.  Birks S, Gray J, Darling-Pomranz C. Using artificial   AI-Generated Educational Content using CEAT Framework.
               intelligence to provide a ‘flipped assessment’ approach   [arXiv Preprint]; 2025.
               to medical education learning opportunities.  Med  Teach.   24.  Gorby GL. Use of verbot technology to enhance classroom
               2024;1-8.                                          lecture. Acad Med. 2001;76(5):552-553.
               doi: 10.1080/0142159x.2024.2434101                 doi: 10.1097/00001888-200105000-00097
            14.  Michael J, Rovick A, Glass M, Zhou Y, Evens M. Learning   25.  He J, Baxter SL, Xu J, Xu J, Zhou X, Zhang K. The practical
               from a computer tutor with natural language capabilities.   implementation of artificial intelligence technologies in
               Interact Learn Environ. 2003;11(3):233-262.
                                                                  medicine. Nat Med. 2019;25(1):30-36.
               doi: 10.1076/ilee.11.3.233.16543
                                                                  doi: 10.1038/s41591-018-0307-0
            15.  Brusilovsky P, Millán E. User models for adaptive hypermedia   26.  Monzon N, Hays FA. Leveraging generative artificial
               and adaptive educational systems. In: Brusilovsky P, Kobsa A,
               Nejdl W, editors. The Adaptive Web: Methods and Strategies   intelligence to improve motivation and retrieval in higher
               of Web Personalization. Berlin, Heidelberg: Springer; 2007.   education learners. JMIR Med Educ. 2025;11:e59210.
               p. 3-53.                                           doi: 10.2196/59210









            Volume 2 Issue 4 (2025)                        145                          doi: 10.36922/AIH025130023
   146   147   148   149   150   151   152   153   154