Page 37 - AIH-2-4
P. 37

Artificial Intelligence in Health                                  Early Parkinson’s detection through CNNs



               doi: 10.3174/ajnr.A3971                            doi: 10.1002/mds.22590
            8.   Cummings  JL, Henchcliffe C, Schaier S, Simuni T,   18.  Staff RT, Ahearn TS, Wilson K,  et al. Shape analysis of
               Waxman  A,  Kemp  P.  The  role of  dopaminergic  imaging   123I-N-omega-fluoropropyl-2-beta-carbomethoxy-
               in patients with symptoms of dopaminergic system   3beta-(4-iodophenyl) nortropane single-photon emission
               neurodegeneration. Brain. 2011;134(11):3146-3166.  computed tomography images in the assessment of
                                                                  patients with parkinsonian syndromes. Nucl Med Commun.
               doi: 10.1093/brain/awr177
                                                                  2009;30(3):194-201.
            9.   Seibyl J, Jennings D, Grachev I, Coffey C, Marek K. 123-I
               Ioflupane SPECT measures of Parkinson disease progression      doi: 10.1097/MNM.0b013e328314b863
               in the Parkinson progression marker initiative (PPMI) trial.   19.  Hirschauer TJ, Adeli H, Buford JA. Computer-aided
               J Nucl Med. 2013;54(1):57-58.                      diagnosis of Parkinson’s disease using enhanced probabilistic
            10.  Beach  TG,  Adler  CH.  Importance  of  low  diagnostic   neural network. J Med Syst. 2015;39(11):179.
               accuracy for early Parkinson’s disease.  Mov Disord.      doi: 10.1007/s10916-015-0353-9
               2018;33(10):1551-1554.
                                                               20.  Kim DH, Wit H, Thurston M. Artificial intelligence in
               doi: 10.1002/mds.27485                             the  diagnosis  of  Parkinson’s disease  from ioflupane-123
            11.  Choi H, Ha S, Im HJ, Paek SH, Lee DS. Refining diagnosis of   single-photon emission computed tomography dopamine
               Parkinson’s disease with deep learning-based interpretation   transporter scans using transfer learning.  Nucl Med
               of dopamine transporter imaging.  Neuroimage Clin.   Commun. 2018;39(10):887-893.
               2017;16:586-594.                                   doi: 10.1097/MNM.0000000000000890
               doi: 10.1016/j.nicl.2017.09.010                 21.  Martínez-Murcia  FJ,  Górriz  JM,  Ramírez  J,  Illán  IA,
            12.  Coarelli G, Garcin B, Roze E, Vidailhet M, Degos B.   Ortiz A, Parkinson’s Progression Markers Initiative.
               Invalidation  of  Parkinson’s  disease  diagnosis  after   Automatic  detection  of  Parkinsonism  using  significance
               years of follow-up based on clinical, radiological   measures and component analysis in DaTSCAN imaging.
               and neurophysiological examination.  J  Neurol Sci.   Neurocomputing. 2014;126:58-70.
               2019;406:116454.                                   doi: 10.1016/j.neucom.2013.01.054
               doi: 10.1016/j.jns.2019.116454                  22.  Martínez-Murcia FJ, Ortiz A, Górriz JM,  et al. A  3D
            13.  Catafau AM, Tolosa E, DaTscan Clinically Uncertain   convolutional neural network approach for the diagnosis
               Parkinsonian Syndromes Study Group. Impact of      of Parkinson’s disease. In: International Work-Conference on
               dopamine  transporter  SPECT  using  123I-Ioflupane  on   the Interplay Between Natural and Artificial Computation.
               diagnosis and management of patients with clinically   Cham: Springer; 2017. p. 324-333.
               uncertain  Parkinsonian  syndromes.  Mov  Disord.      doi: 10.1007/978-3-319-59740-9_32
               2004;19(10):1175-1182.
                                                               23.  Oliveira FP, Castelo-Branco M. Computer-aided diagnosis of
               doi: 10.1002/mds.20112                             Parkinson’s disease based on [(123)I]FP-CIT SPECT binding
            14.  Kupsch AR, Bajaj N, Weiland F, et al. Impact of DaTscan   potential images, using the voxels-as-features approach and
               SPECT  imaging  on  clinical  management,  diagnosis,   support vector machines. J Neural Eng. 2015;12(2):026008.
               confidence of diagnosis, quality of life, health resource use      doi: 10.1088/1741-2560/12/2/026008
               and safety in patients with clinically uncertain parkinsonian
               syndromes: A  prospective 1-year follow-up of an open-  24.  Ortiz A, Munilla J, Martínez-Ibañez M, Górriz JM, Ramírez J,
               label controlled study.  J  Neurol Neurosurg Psychiatry.   Salas-Gonzalez D. Parkinson’s disease detection using
               2012;83(6):620-628.                                isosurfaces-based features  and  convolutional neural
                                                                  networks. Front Neuroinform. 2019;13:48.
               doi: 10.1136/jnnp-2011-301695
                                                                  doi: 10.3389/fninf.2019.00048
            15.  Marek K, Jennings D, Seibyl JP. Long-term follow-up of
               patients with scans without evidence of dopaminergic deficit   25.  Prashanth R, Dutta Roy S, Mandal PK, Ghosh S. Automatic
               (SWEDD) in the ELLDOPA study. Neurology. 2005;64:A274.  classification and prediction models for early Parkinson’s
                                                                  disease  diagnosis  from  SPECT  imaging.  Expert Syst Appl.
            16.  Benamer TS, Patterson J, Grosset DG,  et  al. Accurate   2014;41(8):3333-3342.
               differentiation of parkinsonism and essential tremor using
               visual  assessment of  [123I]-FP-CIT SPECT  imaging:  The      doi: 10.1016/j.eswa.2013.11.031
               [123I]-FP-CIT study group. Mov Disord. 2000;15(3):503-510.  26.  Prashanth R, Dutta Roy  S, Mandal PK, Ghosh  S. High-
            17.  Scherfler  C,  Nocker  M.  Dopamine  transporter  accuracy detection of early Parkinson’s disease through
               SPECT: How to remove subjectivity?  Mov Disord.    multimodal features and machine learning. Int J Med Inform.
               2009;24(Suppl 2):S721-S724.                        2016;90:13-21.


            Volume 2 Issue 4 (2025)                         31                          doi: 10.36922/AIH025040005
   32   33   34   35   36   37   38   39   40   41   42