Page 37 - AIH-2-4
P. 37
Artificial Intelligence in Health Early Parkinson’s detection through CNNs
doi: 10.3174/ajnr.A3971 doi: 10.1002/mds.22590
8. Cummings JL, Henchcliffe C, Schaier S, Simuni T, 18. Staff RT, Ahearn TS, Wilson K, et al. Shape analysis of
Waxman A, Kemp P. The role of dopaminergic imaging 123I-N-omega-fluoropropyl-2-beta-carbomethoxy-
in patients with symptoms of dopaminergic system 3beta-(4-iodophenyl) nortropane single-photon emission
neurodegeneration. Brain. 2011;134(11):3146-3166. computed tomography images in the assessment of
patients with parkinsonian syndromes. Nucl Med Commun.
doi: 10.1093/brain/awr177
2009;30(3):194-201.
9. Seibyl J, Jennings D, Grachev I, Coffey C, Marek K. 123-I
Ioflupane SPECT measures of Parkinson disease progression doi: 10.1097/MNM.0b013e328314b863
in the Parkinson progression marker initiative (PPMI) trial. 19. Hirschauer TJ, Adeli H, Buford JA. Computer-aided
J Nucl Med. 2013;54(1):57-58. diagnosis of Parkinson’s disease using enhanced probabilistic
10. Beach TG, Adler CH. Importance of low diagnostic neural network. J Med Syst. 2015;39(11):179.
accuracy for early Parkinson’s disease. Mov Disord. doi: 10.1007/s10916-015-0353-9
2018;33(10):1551-1554.
20. Kim DH, Wit H, Thurston M. Artificial intelligence in
doi: 10.1002/mds.27485 the diagnosis of Parkinson’s disease from ioflupane-123
11. Choi H, Ha S, Im HJ, Paek SH, Lee DS. Refining diagnosis of single-photon emission computed tomography dopamine
Parkinson’s disease with deep learning-based interpretation transporter scans using transfer learning. Nucl Med
of dopamine transporter imaging. Neuroimage Clin. Commun. 2018;39(10):887-893.
2017;16:586-594. doi: 10.1097/MNM.0000000000000890
doi: 10.1016/j.nicl.2017.09.010 21. Martínez-Murcia FJ, Górriz JM, Ramírez J, Illán IA,
12. Coarelli G, Garcin B, Roze E, Vidailhet M, Degos B. Ortiz A, Parkinson’s Progression Markers Initiative.
Invalidation of Parkinson’s disease diagnosis after Automatic detection of Parkinsonism using significance
years of follow-up based on clinical, radiological measures and component analysis in DaTSCAN imaging.
and neurophysiological examination. J Neurol Sci. Neurocomputing. 2014;126:58-70.
2019;406:116454. doi: 10.1016/j.neucom.2013.01.054
doi: 10.1016/j.jns.2019.116454 22. Martínez-Murcia FJ, Ortiz A, Górriz JM, et al. A 3D
13. Catafau AM, Tolosa E, DaTscan Clinically Uncertain convolutional neural network approach for the diagnosis
Parkinsonian Syndromes Study Group. Impact of of Parkinson’s disease. In: International Work-Conference on
dopamine transporter SPECT using 123I-Ioflupane on the Interplay Between Natural and Artificial Computation.
diagnosis and management of patients with clinically Cham: Springer; 2017. p. 324-333.
uncertain Parkinsonian syndromes. Mov Disord. doi: 10.1007/978-3-319-59740-9_32
2004;19(10):1175-1182.
23. Oliveira FP, Castelo-Branco M. Computer-aided diagnosis of
doi: 10.1002/mds.20112 Parkinson’s disease based on [(123)I]FP-CIT SPECT binding
14. Kupsch AR, Bajaj N, Weiland F, et al. Impact of DaTscan potential images, using the voxels-as-features approach and
SPECT imaging on clinical management, diagnosis, support vector machines. J Neural Eng. 2015;12(2):026008.
confidence of diagnosis, quality of life, health resource use doi: 10.1088/1741-2560/12/2/026008
and safety in patients with clinically uncertain parkinsonian
syndromes: A prospective 1-year follow-up of an open- 24. Ortiz A, Munilla J, Martínez-Ibañez M, Górriz JM, Ramírez J,
label controlled study. J Neurol Neurosurg Psychiatry. Salas-Gonzalez D. Parkinson’s disease detection using
2012;83(6):620-628. isosurfaces-based features and convolutional neural
networks. Front Neuroinform. 2019;13:48.
doi: 10.1136/jnnp-2011-301695
doi: 10.3389/fninf.2019.00048
15. Marek K, Jennings D, Seibyl JP. Long-term follow-up of
patients with scans without evidence of dopaminergic deficit 25. Prashanth R, Dutta Roy S, Mandal PK, Ghosh S. Automatic
(SWEDD) in the ELLDOPA study. Neurology. 2005;64:A274. classification and prediction models for early Parkinson’s
disease diagnosis from SPECT imaging. Expert Syst Appl.
16. Benamer TS, Patterson J, Grosset DG, et al. Accurate 2014;41(8):3333-3342.
differentiation of parkinsonism and essential tremor using
visual assessment of [123I]-FP-CIT SPECT imaging: The doi: 10.1016/j.eswa.2013.11.031
[123I]-FP-CIT study group. Mov Disord. 2000;15(3):503-510. 26. Prashanth R, Dutta Roy S, Mandal PK, Ghosh S. High-
17. Scherfler C, Nocker M. Dopamine transporter accuracy detection of early Parkinson’s disease through
SPECT: How to remove subjectivity? Mov Disord. multimodal features and machine learning. Int J Med Inform.
2009;24(Suppl 2):S721-S724. 2016;90:13-21.
Volume 2 Issue 4 (2025) 31 doi: 10.36922/AIH025040005

