Page 110 - AJWEP-22-4
P. 110
Salako, et al.
bias and presence-only distribution models: Implications Neural Networks R Package e Version; 2019. Available
for background and pseudo-absence data. Ecol Appl. from: https://cran.r-project.org/package=neuralnet [Last
2009;19:181-197. accessed on 2024 Apr 12].
doi: 10.1890/07-2153.1 42. Salako G, Zaitsev A, Betancur-Corredor B, Russell DJ.
28. Ghorbani A, Amir MM, Esmali Ouri A. Utility of the Modelling and spatial prediction of earthworms
NDVI for land/canopy cover mapping in Khalkhal ecological-categories distribution reveal their habitat and
County (Iran). Ann Biolo Res. 2012;3:5494-5503. environmental preferences. Ecol Indic. 2024;169:1128.
29. Rouse JW, Haas RH, Scheel JA, Deering DW. Monitoring doi: 10.1016/j.ecolind.2024.112832
vegetation systems in the great plains with ERTS. 43. Jiménez-Valverde A. Insights into the area under
Proceedings, 3 Earth Resource Technology Satellite the receiver operating characteristic curve (AUC) as
rd
(ERTS) Symposium. 1974;1:48-62. discrimination measure in species distribution modelling.
30. McFeeters SK. The use of the normalized difference Glob Ecol Biogr. 2011;21(4):498-507.
water index (NDWI) in the delineation of open water doi: 10.1111/j.1466-8238.2011.00683.x
features. Int J Remote Sens. 1996;17:1425-1432. 44. Cohen J. A coefficient of agreement for nominal scales.
doi: 10.1080/0143116960894871 Educ Psychol Measure. 1960;20:37-46.
31. Xu H. Modification of normalized difference water index doi: 10.1177/001316446002000104
(NDWI) to enhance open water features in remotely 45. Manel S, Ceri WH, Ormerod SJ. Evaluating presence-
sensed imagery. Int J Remote Sens. 2006;27:3025-3033. absence models in ecology: The need to account for
doi: 10.1080/01431160600589179 prevalence. J Appl Ecol. 2001;38:921-931.
32. Lymburner L, Beggs PJ, Jacobson CR. Estimation doi: 10.1046/j.1365-2664.2001.00647.x
of canopy-average surface-specific leaf area using 46. Silva MC, Moonlight P, Oliveira RS, Rowland L,
landsat tm data. Photogrammetr Eng Remote Sens Pennington TR. COSST: A tool to facilitate seed
2000;66(2):183-191. provenancing for climate-smart ecosystem restoration.
33. Karger DN, Conrad O, Böhner J, et al. Climatologies J Appl Ecol. 2024;62:677-688.
at high resolution for the earth’s land surface areas. Sci doi: 10.1111/1365-2664.14854
Data. 2017;4:170122. 47. Varvatkar A. Improve Neural Network Performance;
doi: 10.1038/sdata.2017.122 2023. Available from: https://www.kaggle.com/code/
34. Breiman L, Cutler A. Description: Classification and avadhutvarvatkar/improve-neural-network-performance
Regression Based on a Forest of Trees Using Random [Last accessed on 2024 May 15].
Inputs, Based on Breiman. Package: RandomForest; 2001. 48. Kipp S, Mistele B, Schmidhalter U. Identification of
doi: 10.1023/A:1010933404324 stay-green and early senescence phenotypes in high-
35. Valavi R, Guillera-Arroita G, Lahoz-Monfort JJ, yielding winter wheat, and their relationship to grain
Elith J. Predictive performance of presence only yield and grain protein concentration using high-
species distribution models: A benchmark study with throughput phenotyping techniques. Funct Plant Biol.
reproducible code. Ecolo Monograp. 2022;92(1):e0148. 2013;41:227-235.
doi: 10.1002/ecm.1486 doi: 10.1071/FP13221
36. Salako G, Russell DJ, Stucke A, Einar E. Assessment 49. Jansen M, Pinto F, Nagel KA, et al. Non-invasive
of multiple model algorithms to predict earthworm phenotyping methodologies enable the accurate
geographic distribution range and biodiversity in characterization of growth and performance of shoots
Germany: Implications for soil-monitoring and and roots. In: Tuberosa R, editor. Genomics of Plant
species-conservation needs. Biodivers Conserv. Genetic Resources. Dordrecht: Springer Science
2023;32:2365-2394. Business Media; 2014.
doi:10.1007/s10531-023-02608-9 50. Li C, Zhu X, Wei Y, et al. Estimating apple tree canopy
37. Elith J, Graham CH, Anderson RP, et al. Novel methods chlorophyll content based on sentinel-2A remote sensing
improve prediction of species’ distributions from imaging. Sci Rep. 2018;8:3756.
occurrence data. Ecography. 2006;29:129-151. doi: 101038/s41598-018-21963-0
38. Li X, Wang YL. Applying various algorithms for species 51. He L, Ren X, Wang Y, et al. Comparing methods for
distribution modelling. Integr Zool. 2013;8:124-135. estimating leaf area index by multi-angular remote
doi: 10.1111/1749-4877.12000 sensing in winter wheat. Sci Rep. 2020;10:13943.
39. Liaw A, Wiener M. Classification and regression by doi: 101038/s41598-020-70951-w
random forest. R News. 2002;2:18-22. 52. Bao J, Yu M, Li J, Wang G, Tang Y, Zhi J. Determination
40. Hijmans RJ, Elith J. Spatial Distribution Models, Spatial of leaf nitrogen content in apple and jujube by near
Data Science With R; 2019. Available from: https:// infrared spectroscopy. Sci Rep. 2024;14:20884.
rspatial.org/sdm/sdm.pdf [Last accessed on 2024 Jun 10]. doi: 10.1038/s41598-024-71590-1
41. Fritsch S, Guenther F, Wright M. Neuralnet: Training of 53. Oyebanji OO, Salako G, Nneji LM, et al. Impact of
Volume 22 Issue 4 (2025) 102 doi: 10.36922/AJWEP025210160

