Page 50 - AJWEP-v22i3
P. 50

Umaha, et al.

                   doi: 10.1186/s13321-020-00436-5                      doi: 10.3390/rs12203416
                4.  Wang J, Zeng X, Shan D, Zhou Q, Peng H. Image target   15.  Fingas MF, Brown CE.  Review  of oil  spill  remote
                   recognition based on improved convolutional  neural   sensing. Spill Sci Technol Bull. 1997;4(4):199-208.
                   network. Math Probl Eng. 2022;2022:2213295.          doi: 10.1016/S1353-2561(98)00023-1
                   doi: 10.1155/2022/2213295                        16.  Zhang C, Harrison PA, Pan X, Li H, Sargent I, Atkinson PM.
                5.  [Citation  Report] Neuromorphic Processing at Tera-  Scale  Sequence  Joint  Deep  Learning  (SS-JDL) for
                   OP/s Speeds with Soliton Crystal Microcombs. Available   land  use  and  land  cover  classification.  Remote Sens
                   from: https://scite.ai/reports/neuromorphic-processing-  Environ.2020;237:111593.
                   at-tera-op-s-speeds-G3mRdKWE?showReferences=true      doi: 10.1016/j.rse.2019.111593
                   [Last accessed on 2024 Jun 13].                  17.  Zhan  C,  Bai  K,  Tu  B,  Zhang  W.  Offshore  Oil  spill
                6.  Topouzelis K. Oil Spill Detection by SAR Images: Dark   detection based on CNN, DBSCAN, and hyperspectral
                   formation detection, feature extraction and classification   imaging. Sensors. 2024;24(2):411.
                   algorithms. Sensors. 2008;8(10):6642-6659.           doi: 10.3390/s24020411
                   doi: 10.3390/s8106642                            18.  Zhang J, Ai B, Shangand H, Li B. Oil detection in SAR
                7.  Schvartzman  I,  Havivi  S,  Maman  S, Rotman  SR,   Images  Based  on Improved  Mask R-CNN Model.  In:
                   Blumberg  DG.  Large  oil  spill  classification  using  sar   Proceeding SPIE 12815. Internaational Conference on
                   images based on spatial histogram. Int Arch Photogramm   Remote Sensing, Mapping and Geograhic Systems; 2023.
                   Remote Sens Spatial Inform Sci. 2016;XLI-B8:1183-1186.     doi: 10.1117/12.3010303
                   doi: 10.5194/isprs-archives-XLI-B8-1183-2016     19.  Ma X, Xu J, Wu P, Kong P. Oil spill detection based on
                8.  Mahmoudi  Ghara F, Shokouhi SB, Akbarizadeh  G. A   deep convolutional neural networks using polarimetric
                   new technique  for segmentation  of the oil spills from   scattering  information  from  Sentinel-1  SAR images.
                   synthetic-aperture  radar images using convolutional   IEEE Trans Geosci Remote Sens. 2022;60:4204713.
                   neural network. IEEE J Sel Top Appl Earth Obs Remote   20.  Yekeen ST, Balogun AL, Wan Yusof KB. A novel deep
                   Sens. 2022;15:8834-8844.                             learning  instance  segmentation model  for automated
                   doi: 10.1109/JSTARS.2022.3213768                     marine oil spill detection. ISPRS J Photogramm Remote
                9.  Chen Y, Wang Z. Marine Oil spill detection from SAR   Sens. 2020;167:190-200.
                   images based on attention u-net model using polarimetric   21.  Feinauer  DM, Latif  G,  Alenazy  AM,  Tayem  N,
                   and wind speed information. Int J Environ Res Public   Alghazo  J,  Alzubaidi  L.  Oil  Spill  Identification
                   Health. 2022;19(19):19.                              Using  Deep Convolutional  Neural Networks.  In:
                   doi: 10.3390/ijerph191912315                         Proceedings - 2022 14  IEEE International Conference
                                                                                          th
                10.  Kumar  A, Roy  AH,  Andreadis  KM, He  X, Butler  C.   on Computational  Intelligence  and Communication
                   A  multi-sensor approach  to characterize  winter water-  Networks, CICN 2022. Institute  of Electrical  and
                   level  drawdown patterns  in lakes.  Remote  Sens.   Electronics Engineers; 2022. p. 240-245.
                   2024;16(6):947.                                      doi: 10.1109/CICN56167.2022.10008373
                   doi: 10.3390/rs16060947.                         22.  Mahmoud  AS,  Mohamed SA,  El-Khoriby RA,
                11.  Pham-Duc  B,  Prigent  C,  Aires  F.  Surface  water   AbdelSalam HM, El-Khodary IA. Oil spill identification
                   monitoring within cambodia and the vietnamese mekong   based  on dual  attention  unet  model  using  synthetic
                   delta over a year, with Sentinel-1 SAR  observations.   aperture  radar  images.  J  Indian  Soc  Remote  Sens.
                   Water. 2017;9(6):366.                                2023;51:121-133.
                   doi: 10.3390/w9060366                                doi: 10.1007/s12524-022-01624-6
                12.  Vyas G, Bhan A, Gupta D. Detection of oil Spills using   23.  Ahmed S, ElGharbawi T, Salah M, El-Mewafi M. Deep
                   Feature Extraction and Threshold Based Segmentation   neural  network for oil spill detection  using Sentinel-1
                   Techniques. In:  2015  2   International Conference on   data: Application to Egyptian coastal regions. Geomatics
                                       nd
                   Signal  Processing  and  Integrated  Networks  (SPIN);   Nat Hazards Risk. 2022;14(1):76-94.
                   2015. p. 579-583.                                24.  Huang X, Zhang B, Perrie W, Lu Y, Wang C. A novel
                   doi: 10.1109/SPIN.2015.7095433                       deep learning method for marine oil spill detection from
                13.  Liu P, Li Y, Liu B, Chen P, Xu J. Semi-automatic oil spill   satellite  synthetic  aperture  radar imagery. Mar Pollut
                   detection on X-Band marine radar images using texture   Bull. 2022;179:113666.
                   analysis, machine learning, and adaptive thresholding.   25.  Basit A, Siddique MA, Sarfraz MS. Deep Learning Based
                   Remote Sens. 2019;11(7):756.                         Oil  Spill  Classification  Using  UNET  Convolutional
                   doi: 10.3390/rs11070756                              Neural Network. In: 2021 IEEE International Geoscience
                14.  Temitope Yekeen S, Balogun AL. Advances in remote   and Remote Sensing Symposium IGARSS,  Brussels,
                   sensing technology, machine learning and deep learning   Belgium; 2021. p. 3491-3494.
                   for marine oil spill detection, prediction and vulnerability      doi: 10.1109/IGARSS47720.2021.9553646
                   assessment. Remote Sens. 2020;12(20):756.        26.  Abba AS,  Mustaffa  NH,  Hashim  SZM, Alwee  R.  Oil



                Volume 22 Issue 3 (2025)                        44                                 doi: 10.36922/ajwep.8282
   45   46   47   48   49   50   51   52   53   54   55