Page 50 - AJWEP-v22i3
P. 50
Umaha, et al.
doi: 10.1186/s13321-020-00436-5 doi: 10.3390/rs12203416
4. Wang J, Zeng X, Shan D, Zhou Q, Peng H. Image target 15. Fingas MF, Brown CE. Review of oil spill remote
recognition based on improved convolutional neural sensing. Spill Sci Technol Bull. 1997;4(4):199-208.
network. Math Probl Eng. 2022;2022:2213295. doi: 10.1016/S1353-2561(98)00023-1
doi: 10.1155/2022/2213295 16. Zhang C, Harrison PA, Pan X, Li H, Sargent I, Atkinson PM.
5. [Citation Report] Neuromorphic Processing at Tera- Scale Sequence Joint Deep Learning (SS-JDL) for
OP/s Speeds with Soliton Crystal Microcombs. Available land use and land cover classification. Remote Sens
from: https://scite.ai/reports/neuromorphic-processing- Environ.2020;237:111593.
at-tera-op-s-speeds-G3mRdKWE?showReferences=true doi: 10.1016/j.rse.2019.111593
[Last accessed on 2024 Jun 13]. 17. Zhan C, Bai K, Tu B, Zhang W. Offshore Oil spill
6. Topouzelis K. Oil Spill Detection by SAR Images: Dark detection based on CNN, DBSCAN, and hyperspectral
formation detection, feature extraction and classification imaging. Sensors. 2024;24(2):411.
algorithms. Sensors. 2008;8(10):6642-6659. doi: 10.3390/s24020411
doi: 10.3390/s8106642 18. Zhang J, Ai B, Shangand H, Li B. Oil detection in SAR
7. Schvartzman I, Havivi S, Maman S, Rotman SR, Images Based on Improved Mask R-CNN Model. In:
Blumberg DG. Large oil spill classification using sar Proceeding SPIE 12815. Internaational Conference on
images based on spatial histogram. Int Arch Photogramm Remote Sensing, Mapping and Geograhic Systems; 2023.
Remote Sens Spatial Inform Sci. 2016;XLI-B8:1183-1186. doi: 10.1117/12.3010303
doi: 10.5194/isprs-archives-XLI-B8-1183-2016 19. Ma X, Xu J, Wu P, Kong P. Oil spill detection based on
8. Mahmoudi Ghara F, Shokouhi SB, Akbarizadeh G. A deep convolutional neural networks using polarimetric
new technique for segmentation of the oil spills from scattering information from Sentinel-1 SAR images.
synthetic-aperture radar images using convolutional IEEE Trans Geosci Remote Sens. 2022;60:4204713.
neural network. IEEE J Sel Top Appl Earth Obs Remote 20. Yekeen ST, Balogun AL, Wan Yusof KB. A novel deep
Sens. 2022;15:8834-8844. learning instance segmentation model for automated
doi: 10.1109/JSTARS.2022.3213768 marine oil spill detection. ISPRS J Photogramm Remote
9. Chen Y, Wang Z. Marine Oil spill detection from SAR Sens. 2020;167:190-200.
images based on attention u-net model using polarimetric 21. Feinauer DM, Latif G, Alenazy AM, Tayem N,
and wind speed information. Int J Environ Res Public Alghazo J, Alzubaidi L. Oil Spill Identification
Health. 2022;19(19):19. Using Deep Convolutional Neural Networks. In:
doi: 10.3390/ijerph191912315 Proceedings - 2022 14 IEEE International Conference
th
10. Kumar A, Roy AH, Andreadis KM, He X, Butler C. on Computational Intelligence and Communication
A multi-sensor approach to characterize winter water- Networks, CICN 2022. Institute of Electrical and
level drawdown patterns in lakes. Remote Sens. Electronics Engineers; 2022. p. 240-245.
2024;16(6):947. doi: 10.1109/CICN56167.2022.10008373
doi: 10.3390/rs16060947. 22. Mahmoud AS, Mohamed SA, El-Khoriby RA,
11. Pham-Duc B, Prigent C, Aires F. Surface water AbdelSalam HM, El-Khodary IA. Oil spill identification
monitoring within cambodia and the vietnamese mekong based on dual attention unet model using synthetic
delta over a year, with Sentinel-1 SAR observations. aperture radar images. J Indian Soc Remote Sens.
Water. 2017;9(6):366. 2023;51:121-133.
doi: 10.3390/w9060366 doi: 10.1007/s12524-022-01624-6
12. Vyas G, Bhan A, Gupta D. Detection of oil Spills using 23. Ahmed S, ElGharbawi T, Salah M, El-Mewafi M. Deep
Feature Extraction and Threshold Based Segmentation neural network for oil spill detection using Sentinel-1
Techniques. In: 2015 2 International Conference on data: Application to Egyptian coastal regions. Geomatics
nd
Signal Processing and Integrated Networks (SPIN); Nat Hazards Risk. 2022;14(1):76-94.
2015. p. 579-583. 24. Huang X, Zhang B, Perrie W, Lu Y, Wang C. A novel
doi: 10.1109/SPIN.2015.7095433 deep learning method for marine oil spill detection from
13. Liu P, Li Y, Liu B, Chen P, Xu J. Semi-automatic oil spill satellite synthetic aperture radar imagery. Mar Pollut
detection on X-Band marine radar images using texture Bull. 2022;179:113666.
analysis, machine learning, and adaptive thresholding. 25. Basit A, Siddique MA, Sarfraz MS. Deep Learning Based
Remote Sens. 2019;11(7):756. Oil Spill Classification Using UNET Convolutional
doi: 10.3390/rs11070756 Neural Network. In: 2021 IEEE International Geoscience
14. Temitope Yekeen S, Balogun AL. Advances in remote and Remote Sensing Symposium IGARSS, Brussels,
sensing technology, machine learning and deep learning Belgium; 2021. p. 3491-3494.
for marine oil spill detection, prediction and vulnerability doi: 10.1109/IGARSS47720.2021.9553646
assessment. Remote Sens. 2020;12(20):756. 26. Abba AS, Mustaffa NH, Hashim SZM, Alwee R. Oil
Volume 22 Issue 3 (2025) 44 doi: 10.36922/ajwep.8282