Page 51 - AJWEP-v22i3
P. 51
SpillNet CNN model for oil spill detection
spill classification based on satellite image using deep 2023;116:103153.
learning techniques. Baghdad Sci.J. 2024;21(2(SI):0684. 39. Bui NA, Oh Y, Lee I. Oil spill detection and classification
27. Dehghani-Dehcheshmeh S, Akhoondzadeh M, through deep learning and tailored data augmentation.
Homayouni S. Oil spills detection from SAR Earth Int J Appl Earth Observ Geoinform. 2024;129:103845.
observations based on a hybrid CNN transformer doi: 10.1016/j.jag.2024.103845
networks. Mar Pollut Bull. 2023;190:114834. 40. Ukpaka CP, Puyate YT, Nwokide LC. Predictive model
28. Kalyan KS. A survey of GPT-3 family large language to detect insulation failure and pipe leakage in natural
models including ChatGPT and GPT-4. Rochester, NY: gas transmission pipeline using simulation software.
Cornell University, New York; 2023. Indian J Eng. 2019;16:135-166.
doi: 10.2139/ssrn.4593895 41. Ukenedo OG, Ukpaka CP, Nkoi B. Effects of unsafe acts
29. Urolagin S, Nayak J, Acharya UR. Gabor CNN based and conditions on the reliability of equipment installation
intelligent system for visual sentiment analysis of in oil and gas servicing unit: A Case Study. Indian J Eng.
social media data on cloud environment. IEEE Access. 2022;19(51):294-309.
2022;10:132455-132471. 42. Khaira A, Dwivedi RK, Srivastava S. A state of the
doi: 10.1109/ACCESS.2022.3228263 art review of online condition monitoring tools using
30. Daniyan IA, Dahunsi OA, Oguntuase OB, Daniyan OL, ndt as principal testing technique. Indian J Eng.
Mpofu K. Development of a prototype test rig for leak 2016;13(33):338-346.
detection in pipelines. Procedia CIRP. 2019;80:524-529. 43. Waghmare SN, Raut DN, Mahajan SK, Bhamare SS.
doi: 10.1016/j.procir.2019.01.016 Improving reliability for SMES in India by using faults
31. Daniyan IA, Balogun V, Ererughurie OK, Daniyan OL, classification. Indian J Eng. 2016;13(33):354-361.
Oladapo BI. Development of an inline inspection robot 44. Promise NU, Ukpaka CP, Puyate YT. Biokinetics of
for the detection of pipeline defects. J Facilities Manag. crude oil remediation using Dogoyaro (Azadirachta
2022;20(2):193-217. indica) Stem. Indian J Eng. 2020;17(47):250-260.
doi: 10.1108/JFM-01-2021-0010 45. Das K, Janardhana P, Narayana H. Application of
32. Krestenitis M, Orfanidis G, Ioannidis K, Avgerinakis K, CNN based image classification technique for oil spill
Vrochidis S, Kompatsiaris I. Oil spill identification from detection. Indian J Geo Mar Sci. 2023;52(1):5-14.
satellite images using deep neural networks. Remote 46. Guo H, Wu D, An J. Discrimination of oil slicks and
Sens. 2019;11(15):1762. look-alikes in polarimetric SAR images using CNN.
doi: 10.3390/rs11151762 Sensors. 2017;17(8):1837.
33. Chollet F. Xception: Deep Learning with Depthwise doi: 10.3390/s17081837
Separable Convolutions, 2017 IEEE Conference on 47. Hidalgo MN, Gallego AJ, Gil P, Pertusa A. Two-stage
Computer Vision and Pattern Recognition (CVPR), convolutional neural network for ship and spill detection
Honolulu, HI, USA, 2017, pp. 1800-1807. using SLAR images. IEEE Trans Geosci Remote Sens.
doi: 10.1109/CVPR.2017.195 2018;56(9):5217-5230.
34. He K, Zhang X, Ren S, Sun J. Deep Residual Learning doi: 10.1109/TGRS. 2018.2812619
for Image Recognition, 2016 IEEE Conference on 48. Cantorna D, Dafonte C, Iglesias A, Arcay B. Oil spill
Computer Vision and Pattern Recognition (CVPR), Las segmentation in SAR images using convolutional
Vegas, NV, USA, 2016, pp. 770-778. neural networks. A comparative analysis with clustering
doi: 10.1109/CVPR.2016.90 and logistic regression algorithms. Appl Soft Comput.
35. Mustafa A, Kim H, Hilton A. MSFD: Multi-Scale 2019;84:105716.
segmentation-based feature detection for wide-baseline doi: 10.1016/j.asoc.2019.105716
scene reconstruction. IEEE Trans Image Process. 49. Zeng K, Wang Y. A deep convolutional neural network
2019;28(3):1118-1132. for oil spill detection from spaceborne SAR images.
doi: 10.1109/TIP.2018.2872906 Remote Sens. 2020;12(6):1015.
36. Mera D, Bolon-Canedo V, Cotos JM, Alonso-Betanzos doi: 10.3390/rs12061015
A. On the use of feature selection to improve the 50. Song D, Zhen Z, Wang B, et al. A novel marine oil
detection of sea oil spill in SAR images. Comput Geosci. spillage identification scheme based on convolution
2017;100:166-178. neural network feature extraction from fully polarimetric
37. Najouri Z, Rianzanoff S, Defontaines B, Xavier JP. SAR imagery. IEEE Access. 2020;8:59801-59820.
A statistical approach to preprocess and enhance doi: 10.1109/ACCESS.2020.2979219
c-band SAR images in order to detect automatically 51. Kang J, Yang C, Yi J, Lee Y. Detection of marine oil spill
marine oi slicks. IEEE Trans Geosci Remote Sens. from planetscope images using CNN and transformer
2018;56:2554-2564. models. J Mar Sci Eng. 2024;12:2095.
38. Liu X, Zhang Y, Zhou H, et al. Multi-source knowledge 52. Hamza MS, Jauro SS, Ismail M. Oil spill detection
graph reasoning for ocean oil spill detection from satellite using convolutional neural network. Bima J Sci Technol.
SAR images. Int J Appl Earth Observ Geoinform. 2023;7(4):15-30.
Volume 22 Issue 3 (2025) 45 doi: 10.36922/ajwep.8282