Page 91 - AN-1-1
P. 91

Advanced Neurology                                                        TRPM2 in neurological disorders



               Microcirculation, 15(4): 359–371.               46.  Xicoy H, Wieringa B, Martens GJ, 2017, The SH-SY5Y cell
                                                                  line in Parkinson’s disease research: A  systematic review.
               https://doi.org/10.1080/10739680701762656
                                                                  Mol Neurodegener, 12(1): 10.
            35.  Sumoza-Toledo A, Lange I, Cortado H, et al., 2011, Dendritic
               cell maturation and chemotaxis is regulated by TRPM2-     https://doi.org/10.1186/s13024-017-0149-0
                                2+
               mediated Lysosomal Ca  release. FASEB J, 25(10): 3529–3542.  47.  Yıldızhan K, Nazıroğlu M, 2021, Protective role of selenium
                                                                  on MPP+ and homocysteine-induced TRPM2 channel
               https://doi.org/10.1096/fj.10-178483
                                                                  activation in SH-SY5Y cells. J Recept Signal Transduct Res,
            36.  DeMaagd G, Philip A, 2015, Parkinson’s disease and   online ahead of print.
               its management: Part  1: Disease entity, risk factors,
               pathophysiology, clinical presentation, and diagnosis. P T,      https://doi.org/10.1080/10799893.2021.1981381
               40(8): 504–532.                                 48.  An X, Fu Z, Mai C,  et  al., 2019, Increasing the TRPM2
                                                                  channel expression in human neuroblastoma SH-SY5Y cells
            37.  Kin K, Yasuhara T, Kameda M, et al., 2019, Animal models
               for Parkinson’s disease research: Trends in the 2000s. Int J   augments the susceptibility to ROS-induced cell death. Cells,
               Mol Sci, 20(21): 5402.                             8(1): 1–8.
                                                                  https://doi.org/10.3390/cells8010028
               https://doi.org/10.3390/ijms20215402
                                                               49.  Vaidya B, Sharma SS, 2020, Transient receptor potential
            38.  Sun  Y,  Sukumaran  P,  Selvaraj  S, et  al., 2018, TRPM2
               Promotes neurotoxin MPP+/MPTP-induced cell death. Mol   channels as an emerging target for the treatment of
               Neurobiol, 55(1): 409–420.                         Parkinson’s disease: An insight into role of pharmacological
                                                                  interventions. Front Cell Dev Biol, 8: 584513.
               https://doi.org/10.1007/s12035-016-0338-9
                                                                  https://doi.org/10.3389/fcell.2020.584513
            39.  Meredith GE, Rademacher DJ, 2011, MPTP mouse models of
               Parkinson’s disease: An update. J Parkinsons Dis, 1(1): 19–33.   50.  Ding XM, Zhao LJ, Qiao HY, et al., 2019, Long Non-coding
                                                                  RNA-p21  regulates  MPP+-induced  neuronal  injury  by
               https://doi.org/10.3233/JPD-2011-11023             targeting miR-625 and depressing TRPM2 in SH-SY5Y cells.
            40.  Malko P, Mortadza SA, McWilliam J, et al., 2019, TRPM2   Chem Biol Interact, 307: 73–81.
               channel in microglia as a new player in neuroinflammation      https://doi.org/10.1016/j.cbi.2019.04.017
               associated  with  a  spectrum  of  central  nervous  system
               pathologies. Front Pharmacol, 10: 239.          51.  Manoharan S, Guillemin GJ, Abiramasundari RS,  et al.,
                                                                  2016, The role of reactive oxygen species in the pathogenesis
               https://doi.org/10.3389/fphar.2019.00239           of Alzheimer’s disease, Parkinson’s disease, and Huntington’s
            41.  Hermosura MC, Garruto RM, 2007, TRPM7 and TRPM2-  disease: A mini review. Oxid Med Cell Longev, 2016: 8590578.
               candidate susceptibility genes for Western Pacific ALS and      https://doi.org/10.1155/2016/8590578
               PD? Biochim Biophys Acta, 1772(8): 822–835.
                                                               52.  Drummond E, Wisniewski T, 2017, Alzheimer’s disease:
               https://doi.org/10.1016/j.bbadis.2007.02.008       Experimental models and reality. Acta Neuropathol, 133(2):
            42.  Hermosura MC, Cui AM, Go RC, et al., Altered functional   155–175.
               properties of a TRPM2 variant in guamanian ALS and PD.      https://doi.org/10.1007/s00401-016-1662-x
               Proc Natl Acad Sci U S A, 105(46): 18029–18034.
                                                               53.  Chishti MA, Yang DS, Janus C, et al., 2001, Early-onset
               https://doi.org/10.1073/pnas.0808218105            amyloid deposition and cognitive deficits in transgenic
            43.  Vaidya B, Kaur H, Thapak P, et al., 2022, Pharmacological   mice expressing a double mutant form of amyloid precursor
               modulation of TRPM2 channels via PARP pathway leads to   protein 695. J Biol Chem, 276(24): 21562–21570.
               neuroprotection in MPTP-induced Parkinson’s disease in      https://doi.org/10.1074/jbc.M100710200
               Sprague dawley rats. Mol Neurobiol, 59(3): 1528-1542.
                                                               54.  Radde R, Bolmont T, Kaeser SA, et al., 2006, Abeta42-driven
            44.  Yu Y, Xie A, Yang S, 2014, TrkA pathway(s) are involves   cerebral amyloidosis in transgenic mice reveals early and
               in the regulation of TRPM2 and TRPM7 expression in   robust pathology. EMBO Rep, 7(9): 940–946.
               the substantia Nigra of the Parkinson’s disease rat model
               induced by 6-hydroxydopamine. Adv Res, 2: 782–796.     https://doi.org/10.1038/sj.embor.7400784
                                                               55.  Lewis J, McGowan E, Rockwood J, et al., 2000, Neurofibrillary
            45.  Nazıroğlu M, Özgül C, Çelik O,  et al., 2011,
               Aminoethoxydiphenyl borate and flufenamic acid inhibit   tangles, amyotrophy and progressive motor disturbance in
                 2+
               Ca  influx through TRPM2 channels in rat dorsal root   mice expressing mutant (P301L) tau protein.  Nat Genet,
               ganglion neurons activated by ADP-ribose and rotenone.   25(4): 402–405.
               J Membr Biol, 241(2): 69–75.                       https://doi.org/10.1038/78078
               https://doi.org/10.1007/s00232-011-9363-9       56.  Lewis J, Dickson DW, Lin WL, et al., 2001, Enhanced


            Volume 1 Issue 1 (2022)                         14                        https://doi.org/10.36922/an.v1i1.3
   86   87   88   89   90   91   92   93   94   95   96