Page 44 - AN-4-1
P. 44

Advanced Neurology                                                           Ferroptosis in neonatal HIBI



               genetics reveals roles for lipid metabolism genes in nonapoptotic   75.  Evans  PJ,  Evans  R,  Kovar  IZ,  Holton  AF,  Halliwell  B.
               cell death. ACS Chem Biol. 2015;10(7):1604-1609.   Bleomycin-detectable iron in the plasma of premature and
                                                                  full-term neonates. FEBS Lett. 1992;303(2-3):210-212.
               doi: 10.1021/acschembio.5b00245
                                                                  doi: 10.1016/0014-5793(92)80521-h
            65.  Doll S, Proneth B, Tyurina YY,  et  al. ACSL4 dictates
               ferroptosis sensitivity by shaping cellular lipid composition.   76.  Khan JY, Black SM. Developmental changes in murine brain
               Nat Chem Biol. 2017;13(1):91-98.                   antioxidant enzymes. Pediatr Res. 2003;54(1):77-82.
               doi: 10.1038/nchembio.2239                         doi: 10.1203/01.PDR.0000065736.69214.20
            66.  Feng L, Yin X, Hua Q, Ren T, Ke J. Advancements   77.  Roskams AJ, Connor JR. Iron, transferrin, and ferritin in
               in understanding the role of ferroptosis in hypxia-  the rat brain during development and aging. J Neurochem.
               associated brain injury: A narrative review. Transl Pediatr.   1994;63(2):709-716.
               2024;13(6):24-47.                                  doi: 10.1046/j.1471-4159.1994.63020709.x
               doi: 10.21037/tp-24-47                          78.  Taylor EM, Morgan EH. Developmental changes in
            67.  Peeples ES, Genaro-Mattos TC. Ferroptosis: A  promising   transferrin and iron uptake by the brain in the rat. Brain Res
               therapeutic  target  for  neonatal  hypoxic-ischemic  brain   Dev Brain Res. 1990;55(1):35-42.
               injury. Int J Mol Sci. 2022;23(13):7420.           doi: 10.1016/0165-3806(90)90103-6
               doi: 10.3390/ijms23137420                       79.  Lin W, Zhang T, Zheng J, Zhou Y, Lin Z, Fu X. Ferroptosis is
            68.  Cheah JG, Kim SF, Hester LD, et al. NMDA receptor-nitric   involved in hypoxic-ischemic brain damage in neonatal rats.
               oxide transmission mediates neuronal iron homeostasis via   Neuroscience. 2022;487:131-142.
               the GTPase Dexras1. Neuron. 2006;51(4):431-440.     doi: 10.1016/j.neuroscience.2022.02.013
               doi: 10.1016/j.neuron.2006.07.011               80.  Rice JE 3 , Vannucci RC, Brierley JB. The influence of
                                                                          rd
            69.  Yu J, Guo Y, Sun M, Li B, Zhang Y, Li C. Iron is a potential   immaturity on hypoxic-ischemic brain damage in the rat.
               key mediator of glutamate excitotoxicity in spinal cord   Ann Neurol. 1981;9(2):131-141.
               motor neurons. Brain Res. 2009;1257:102-107.       doi: 10.1002/ana.410090206
               doi: 10.1016/j.brainres.2008.12.030             81.  Huo L, Fu J, Wang S, Wang H, Liu X. Emerging ferroptosis
            70.  Parker  D,  Grillner  S.  Long-lasting  substance-P-mediated   inhibitors as a novel therapeutic strategy for the treatment
               modulation of NMDA-induced rhythmic activity in the   of neonatal hypoxic-ischemic encephalopathy.  Eur J Med
               lamprey  locomotor  network  involves  separate  RNA-  Chem. 2024;271:116453.
               and protein-synthesis-dependent stages. Eur J Neurosci.      doi: 10.1016/j.ejmech.2024.116453
               2008;11(5):1515-1522.
                                                               82.  Zhang X, Ding M, Zhu P,  et al. New insights into
               doi: 10.1046/j.1460-9568.1999.00565.x              the  Nrf-2/HO-1  signaling  axis  and  its  application  in
            71.  Ferriero DM, Sheldon RA, Black SM, Chuai J. Selective   pediatric respiratory diseases.  Oxid Med Cell Longev.
               destruction of nitric oxide synthase neurons with quisqualate   2019;2019:3214196.
               reduces damage after hypoxia-ischemia in the neonatal rat.      doi: 10.1155/2019/3214196
               Pediatr Res. 1995;38(6):912-918.
                                                               83.  Cai Y, Li X, Tan X, Wang P, Zhao X, Zhang H, et al. Vitamin
               doi: 10.1203/00006450-199512000-00014              D suppresses ferroptosis and protects against neonatal
            72.  Pulera MR, Adams LM, Liu H,  et al. Apoptosis in a   hypoxic-ischemic encephalopathy by activating the Nrf2/
               neonatal rat model of cerebral hypoxia-ischemia.  Stroke.   HO-1 pathway. Transl Pediatr. 2022;11(10):1633-1644.
               1998;29(12):2622-2630.                             doi: 10.21037/tp-22-397
               doi: 10.1161/01.str.29.12.2622                  84.  Tang Z, Cheng S, Sun Y,  et al. Early TLR4 inhibition
            73.  Dorrepaal CA, Berger HM, Benders MJ, van Zoeren-  reduces hippocampal injury at puberty in a rat model of
               Grobben D, Van de Bor M, Van Bel F. Nonprotein-bound   neonatal hypoxic-ischemic brain damage via regulation
               iron in postasphyxial reperfusion injury of the newborn.   of neuroimmunity and synaptic plasticity.  Exp Neurol.
               Pediatrics. 1996;98(5):883-889.                    2019;321:113039.
            74.  Ogihara T, Hirano K, Ogihara H,  et al. Non-protein-     doi: 10.1016/j.expneurol.2019.113039
               bound transition metals and hydroxyl radical generation   85.  Fang X, Cai Z, Wang H,  et al. Loss of cardiac ferritin H
               in cerebrospinal fluid of newborn infants with hypoxic   facilitates cardiomyopathy via Slc7a11-mediated ferroptosis.
               ischemic encephalopathy. Pediatr Res. 2003;53(4):594-599.  Circ Res. 2020;127(4):486-501.
               doi: 10.1203/01.PDR.0000054685.87405.59            doi: 10.1161/CIRCRESAHA.120.316509


            Volume 4 Issue 1 (2025)                         38                               doi: 10.36922/an.4575
   39   40   41   42   43   44   45   46   47   48   49