Page 16 - AN-4-2
P. 16

Advanced Neurology                                              Lipid droplets and neurodegenerative disorders



               doi: 10.1111/j.1471-4159.2010.06736.x              doi: 10.1016/j.cub.2012.09.018
            36.  Deczkowska A, Keren-Shaul H, Weiner A,  et al. Disease-  47.  Shimabukuro MK, Langhi LGP, Cordeiro I,  et al. Lipid-
               associated microglia: A  universal immune sensor of   laden cells differentially distributed in the aging brain are
               neurodegeneration. Cell. 2018;173(5):1073-1081.    functionally active and correspond to distinct phenotypes.
               doi: 10.1016/j.cell.2018.05.003                    Sci Rep. 2016;6:23795.
            37.  Simpson DSA, Oliver PL. ROS generation in microglia:      doi: 10.1038/srep23795
               Understanding  oxidative  stress  and  inflammation  48.  Yousef H, Czupalla CJ, Lee D,  et al. Aged blood impairs
               in neurodegenerative disease.  Antioxidants (Basel).   hippocampal  neural  precursor  activity  and  activates
               2020;9(8):743.                                     microglia via brain endothelial cell VCAM1.  Nat Med.
               doi: 10.3390/antiox9080743                         2019;25(6):988-1000.
            38.  Chausse B, Kakimoto PA, Kann O. Microglia and lipids:      doi: 10.1038/s41591-019-0440-4
               How metabolism controls brain innate immunity.  Semin   49.  Scheltens P, De Strooper B, Kivipelto M, et al. Alzheimer’s
               Cell Dev Biol. 2021;112:137-144.                   disease. Lancet. 2021;397(10284):1577-1590.
               doi: 10.1016/j.semcdb.2020.08.001                  doi: 10.1016/S0140-6736(20)32205-4
            39.  Gotz M, Huttner WB. The cell biology of neurogenesis. Nat   50.  Swerdlow RH. The neurodegenerative mitochondriopathies.
               Rev Mol Cell Biol. 2005;6(10):777-788.             J Alzheimers Dis. 2009;17(4):737-751.
               doi: 10.1038/nrm1739                               doi: 10.3233/JAD-2009-1095
            40.  Bairos JA, Njoku U, Zafar M, et al. Sterol O-acyltransferase   51.  Alzheimer A, Stelzmann RA, Schnitzlein HN, Murtagh FR.
               (SOAT/ACAT) activity is required to form cholesterol   An  English  translation  of  Alzheimer’s  1907  paper,  “Uber
               crystals in hepatocyte lipid droplets. Biochim Biophys Acta   eine eigenartige Erkankung der Hirnrinde”.  Clin  Anat.
               Mol Cell Biol Lipids. 2024;1869(6):159512.
                                                                  1995;8(6):429-431.
               doi: 10.1016/j.bbalip.2024.159512
                                                                  doi: 10.1002/ca.980080612
            41.  Chang TY, Chang CC, Lin S, et al. Roles of acyl-coenzyme   52.  Hu X, Ma YN, Xia Y. Association between abnormal lipid
               A: cholesterol acyltransferase-1 and -2. Curr Opin Lipidol.   metabolism and Alzheimer’s disease: New research has
               2001;12(3):289-296.
                                                                  revealed significant findings on the APOE4 genotype in
               doi: 10.1097/00041433-200106000-00008              microglia. Biosci Trends. 2024;18(2):195-197.
            42.  Melton EM, Li H, Benson J, et al. Myeloid Acat1/Soat1 KO      doi: 10.5582/bst.2024.01092
               attenuates  pro-inflammatory responses in  macrophages
               and protects against atherosclerosis in a model of advanced   53.  Roca-Agujetas V, Barbero-Camps E, de Dios C,  et  al.
               lesions. J Biol Chem. 2019;294(43):15836-15849.    Cholesterol alters mitophagy by impairing optineurin
                                                                  recruitment and lysosomal clearance in Alzheimer’s disease.
               doi: 10.1074/jbc.RA119.010564                      Mol Neurodegener. 2021;16(1):15.
            43.  Bryleva EY, Rogers MA, Chang CC,  et al. ACAT1 gene      doi: 10.1186/s13024-021-00435-6
               ablation increases 24(S)-hydroxycholesterol content in the
               brain and ameliorates amyloid pathology in mice with AD.   54.  van der Kant R, Langness VF, Herrera CM, et al. Cholesterol
               Proc Natl Acad Sci U S A. 2010;107(7):3081-3086.   metabolism is a druggable axis that independently regulates
                                                                  tau and amyloid-beta in iPSC-derived Alzheimer’s disease
               doi: 10.1073/pnas.0913828107                       neurons. Cell Stem Cell. 2019;24(3):363-375.e369.
            44.  Sun G, Fu C, Shen C, Shi Y. Histone deacetylases in neural      doi: 10.1016/j.stem.2018.12.013
               stem cells and induced pluripotent stem cells.  J  Biomed
               Biotechnol. 2011;2011:835968.                   55.  Malkki H. Alzheimer disease: Effects of the APOE epsilon4
                                                                  allele on brain development. Nat Rev Neurol. 2014;10(1):4.
               doi: 10.1155/2011/835968
                                                                  doi: 10.1038/nrneurol.2013.258
            45.  Stephenson RA, Thomalla JM, Chen L, et al. Sequestration
               to lipid droplets promotes histone availability by   56.  de-Almada BV, de-Almeida LD, Camporez D, et al.
               preventing turnover of excess histones.  Development.   Protective  effect  of  the  APOE-e3  allele  in  Alzheimer’s
               2021;148(15):dev199381.                            disease. Braz J Med Biol Res. 2012;45(1):8-12.
               doi: 10.1242/dev.199381                            doi: 10.1590/s0100-879x2011007500151
            46.  Li Z, Thiel K, Thul PJ, et al. Lipid droplets control the   57.  Velez JI, Lopera F, Sepulveda-Falla D, et al. APOE*E2 allele
               maternal histone supply of Drosophila embryos. Curr Biol.   delays age of onset in PSEN1 E280A Alzheimer’s disease.
               2012;22(22):2104-2113.                             Mol Psychiatry. 2016;21(7):916-924.


            Volume 4 Issue 2 (2025)                         10                               doi: 10.36922/an.5060
   11   12   13   14   15   16   17   18   19   20   21