Page 48 - ARNM-3-1
P. 48
Advances in Radiotherapy
& Nuclear Medicine EZH2 inhibition in ARID1A-deficient TNBC
may provide a new population of resistant patients with J Cell Physiol. 2015;230(11):2683-2694.
treatments that could increase immunogenicity, manage doi: 10.1002/jcp.24991
tumor growth, improve survival, and enhance quality of life.
6. Shen J, Ju Z, Zhao W, et al. ARID1A deficiency promotes
Acknowledgments mutability and potentiates therapeutic antitumor immunity
unleashed by immune checkpoint blockade. Nat Med.
Figures created in BioRender.com by Evelina VanderSpek 2018;24(5):556-562.
and Lauren Lukas.
doi: 10.1038/s41591-018-0012-z
Funding 7. Wang Y, Chen Z, Wu J, Yan H, Wang Y, He J. The mutation
and low expression of arid1a are predictive of a poor
None.
prognosis and high immune infiltration in triple-negative
Conflict of Interest breast cancer. Curr Cancer Drug Targets. 2023;59-68.
doi: 10.2174/1568009623666230522115229
The authors declare they have no competing interests.
8. Sun D, Tian L, Zhu Y, et al. Subunits of ARID1 serve as
Author contributions novel biomarkers for the sensitivity to immune checkpoint
inhibitors and prognosis of advanced non-small cell lung
Conceptualization: Lauren Lukas cancer. Mol Med. 2020;26(1):78.
Visualization: Lauren Lukas
Writing – original draft: Lauren Lukas doi: 10.1186/s10020-020-00208-9
Writing – review & editing: All authors 9. Kim YB, Ahn JM, Bae WJ, Sung CO, Lee D. Functional loss
of ARID1A is tightly associated with high PD-L1 expression
Ethics approval and consent to participate in gastric cancer. Int J Cancer. 2019;145(4):916-926.
Not applicable. doi: 10.1002/ijc.32140
Consent for publication 10. Sun M, Gu Y, Fang H, et al. Clinical outcome and molecular
landscape of patients with ARID1A-loss gastric cancer.
Not applicable. Cancer Sci. 2024;115(3):905-915.
Availability of data doi: 10.1111/cas.16057
11. Jung US, Min KW, Kim DH, Kwon MJ, Park H, Jang HS.
Not applicable. Suppression of ARID1A associated with decreased CD8 T
References cells improves cell survival of ovarian clear cell carcinoma.
J Gynecol Oncol. 2021;32(1):e3.
1. Lehmann BD, Colaprico A, Silva TC, et al. Multi- doi: 10.3802/jgo.2021.32.e3
omics analysis identifies therapeutic vulnerabilities in
triple-negative breast cancer subtypes. Nat Commun. 12. Tarantino P, Barroso-Sousa R, Garrido-Castro AC, et al.
2021;12(1):6276. Understanding resistance to immune checkpoint inhibitors
in advanced breast cancer. Expert Rev Anticancer Ther.
doi: 10.1038/s41467-021-26502-6
2022;22(2):141-153.
2. Loi S, Drubay D, Adams S, et al. Tumor-infiltrating doi: 10.1080/14737140.2022.2020650
lymphocytes and prognosis: A pooled individual patient
analysis of early-stage triple-negative breast cancers. J Clin 13. Chen XY, Li B, Wang Y, et al. Low level of arid1a contributes
Oncol. 2019;37(7):559-569. to adaptive immune resistance and sensitizes triple-negative
breast cancer to immune checkpoint inhibitors. Cancer
doi: 10.1200/jco.18.01010
Commun (Lond). 2023;43(9):1003-1026.
3. Yoshihara K, Shahmoradgoli M, Martínez E, et al. Inferring doi: 10.1002/cac2.12465
tumour purity and stromal and immune cell admixture
from expression data. Nat Commun. 2013;4:2612. 14. Duan R, Du W, Guo W. EZH2: A novel target for cancer
treatment. J Hematol Oncol. 2020;13(1):104.
doi: 10.1038/ncomms3612
doi: 10.1186/s13045-020-00937-8
4. Li K, Wang B, Hu H. Research progress of SWI/SNF complex
in breast cancer. Epigenetics Chromatin. 2024;17(1):4. 15. Pasini D, Di Croce L. Emerging roles for polycomb proteins
in cancer. Curr Opin Genet Dev. 2016;36:50-58.
doi: 10.1186/s13072-024-00531-z
doi: 10.1016/j.gde.2016.03.013
5. Wu Q, Madany P, Akech J, et al. The Swi/SNF atpases are
required for triple negative breast cancer cell proliferation. 16. Zhou L, Yu CW. Epigenetic modulations in triple-negative
Volume 3 Issue 1 (2025) 40 doi: 10.36922/arnm.5132

