Page 52 - ARNM-3-1
P. 52

Advances in Radiotherapy
            & Nuclear Medicine                                                 EZH2 inhibition in ARID1A-deficient TNBC



            82.  Lin Z, Huang L, Li SL, Gu J, Cui X, Zhou Y. PTEN loss   93.  Vejmelkova K, Pokorna P, Noskova K, et al. Tazemetostat in
               correlates with T cell exclusion across human cancers. BMC   the therapy of pediatric INI1-negative malignant rhabdoid
               Cancer. 2021;21(1):429.                            tumors. Sci Rep. 2023;13(1):21623.
               doi: 10.1186/s12885-021-08114-x                    doi: 10.1038/s41598-023-48774-2
            83.  Garcia-Diaz A, Shin DS, Moreno BH,  et al. Interferon   94.  Chen X, Wu J, Pang G, Wei S, Wang P. Integrase interactor
               receptor signaling pathways regulating PD-L1 and Pd-L2   1 (INI1) deficiency in a lung cancer patient presents
               expression. Cell Rep. 2017;19(6):1189-1201.        nonresponse to immunotherapy and tazemetostat: A Case
               doi: 10.1016/j.celrep.2017.04.031                  report. Cureus. 2023;15(8):e42934.
            84.  Wang X, Yang L, Huang F,  et al. Inflammatory cytokines      doi: 10.7759/cureus.42934
               IL-17 and TNF-Α up-regulate PD-L1 expression in human   95.  Narvaez D, Nadal J, Nervo A, et al. The emerging role of
               prostate and colon cancer cells. Immunol Lett. 2017;184:7-14.  tertiary lymphoid structures in breast cancer: A narrative
               doi: 10.1016/j.imlet.2017.02.006                   review. Cancers (Basel). 2024;16(2):396.
            85.  Zhao  Y,  Wang  XX,  Wu  W,  et al.  EZH2  Regulates  PD-L1      doi: 10.3390/cancers16020396
               expression via HIF-1α in non-small cell lung cancer cells.   96.  Grapin M, Richard C, Limagne E,  et al. Optimized
               Biochem Biophys Res Commun. 2019;517(2):201-209.   fractionated  radiotherapy  with  anti-PD-L1  and  anti-tigit:
               doi: 10.1016/j.bbrc.2019.07.039                    A  promising new combination.  J  Immunother Cancer.
                                                                  2019;7(1):160.
            86.  Zhou L, Mudianto T, Ma X, Riley R, Uppaluri R. Targeting
               EZH2 enhances antigen presentation, antitumor immunity,      doi: 10.1186/s40425-019-0634-9
               and circumvents anti-PD-1 resistance in head and neck   97.  Smits  KM,  Melotte  V,  Niessen  HE,  et al.  Epigenetics  in
               cancer. Clin Cancer Res. 2020;26(1):290-300.       radiotherapy: Where are we heading?  Radiother Oncol.
               doi: 10.1158/1078-0432.Ccr-19-1351                 2014;111(2):168-177.

            87.  Xiao G, Jin LL, Liu CQ, et al. EZH2 negatively regulates PD-L1      doi: 10.1016/j.radonc.2014.05.001
               expression in hepatocellular carcinoma.  J  Immunother   98.  Johnson AB, Denko N, Barton MC. Hypoxia induces a novel
               Cancer. 2019;7(1):300.                             signature of chromatin modifications and global repression
               doi: 10.1186/s40425-019-0784-9                     of transcription. Mutat Res. 2008;640(1-2):174-179.
            88.  Qiu F, Yang Q, Sun W, Ruan K, Jiang N, Zhou J. EZH2      doi: 10.1016/j.mrfmmm.2008.01.001
               inhibition activates dsrna-interferon axis stress and   99.  Trappetti  V,  Fazzari  JM,  Fernandez-Palomo  C,  et  al.
               promotes response to PD-1 checkpoint blockade in NSCLC.   Microbeam radiotherapy-a novel therapeutic approach
               J Cancer. 2022;13(9):2893-2904.                    to overcome radioresistance and enhance anti-tumour
               doi: 10.7150/jca.73291                             response in melanoma. Int J Mol Sci. 2021;22(14):7755.
            89.  Li C, Wang Y, Gong Y,  et al. Finding an easy way to      doi: 10.3390/ijms22147755
               harmonize: A review of advances in clinical research and   100. Andrade D, Mehta M, Griffith J, et al. HuR reduces radiation-
               combination strategies of EZH2 inhibitors. Clin Epigenetics.   induced DNA damage by enhancing expression of arid1a.
               2021;13(1):62.                                     Cancers (Basel). 2019;11(12):2014.
               doi: 10.1186/s13148-021-01045-1                    doi: 10.3390/cancers11122014
            90.  Goswami S, Apostolou I, Zhang J, et al. Modulation of EZH2   101. Bakr A, Della Corte G, Veselinov O,  et al. ARID1A
               expression in T cells improves efficacy of anti-CTLA-4   regulates DNA repair through chromatin organization and
               therapy. J Clin Invest. 2018;128(9):3813-3818.     its deficiency triggers DNA damage-mediated anti-tumor
               doi: 10.1172/jci99760                              immune response. Nucleic Acids Res. 2024;52(10):5698-5719.
            91.  Guo R, Li J, Hu J, et al. Combination of epidrugs with immune      doi: 10.1093/nar/gkae233
               checkpoint inhibitors in cancer immunotherapy: From   102. Sak A, Kübler D, Bannik K,  et al. Epigenetic silencing
               theory to therapy. Int Immunopharmacol. 2023;120:110417.  and activation  of transcription:  Influence  on  the
               doi: 10.1016/j.intimp.2023.110417                  radiation sensitivity of glioma cell lines. Int J Radiat Biol.
                                                                  2017;93(5):494-506.
            92.  Zingg D, Arenas-Ramirez N, Sahin D,  et al. The
               histone methyltransferase EZH2 controls mechanisms      doi: 10.1080/09553002.2017.1270472
               of adaptive resistance to tumor immunotherapy.  Cell   103. Alimova I, Birks DK, Harris PS, et al. Inhibition of EZH2
               Rep. 2017;20(4):854-867.
                                                                  suppresses  self-renewal  and  induces  radiation  sensitivity
               doi: 10.1016/j.celrep.2017.07.007                  in atypical rhabdoid teratoid tumor cells.  Neuro Oncol.


            Volume 3 Issue 1 (2025)                         44                             doi: 10.36922/arnm.5132
   47   48   49   50   51   52   53   54   55   56   57