Page 130 - DP-2-3
P. 130

Design+                                                             ML for predicting Alzheimer’s progression



               performance-metrics-61b40819eae1  [Last  accessed  on      doi: 10.1186/s13195-021-00879-4
               2024 Apr 30].
                                                               28.  Shah  R.  GridSearchCV. Tune Hyperparameters with
            26.  Palmqvist S. Comparison of brief cognitive tests and CSF   GridSearchCV. Analytics Vidhya; 2021. Available from:
               biomarkers in predicting Alzheimer’s disease in mild   https://www.analyticsvidhya.com/blog/2021/06/tune-
               cognitive impairment: Six-year follow-up study. PLoS One.   hyperparameters-with-gridsearchcv [Last accessed on
               2012;7(6):e38639.                                  2024 Apr 30].
               doi: 10.1371/journal.pone.0038639               29.  Brownlee J.  How to Use  One-vs-Rest and One-vs-One  for
            27.  Bloch L, Friedrich CM. Data analysis with shapley values for   Multi-Class Classification. Machine Learning Mastery; 2020.
               automatic subject selection in Alzheimer’s disease data sets   Available from: https://machinelearningmastery.com/one-
               using interpretable machine learning. Alzheimers Res Ther.   vs-rest-and-one-vs-one-for-multi-class-classification [Last
               2021;13(1):155.                                    accessed on 2024 Apr 30].
































































            Volume 2 Issue 3 (2025)                         12                           doi: 10.36922/DP025270031
   125   126   127   128   129   130   131   132   133   134