Page 130 - DP-2-3
P. 130
Design+ ML for predicting Alzheimer’s progression
performance-metrics-61b40819eae1 [Last accessed on doi: 10.1186/s13195-021-00879-4
2024 Apr 30].
28. Shah R. GridSearchCV. Tune Hyperparameters with
26. Palmqvist S. Comparison of brief cognitive tests and CSF GridSearchCV. Analytics Vidhya; 2021. Available from:
biomarkers in predicting Alzheimer’s disease in mild https://www.analyticsvidhya.com/blog/2021/06/tune-
cognitive impairment: Six-year follow-up study. PLoS One. hyperparameters-with-gridsearchcv [Last accessed on
2012;7(6):e38639. 2024 Apr 30].
doi: 10.1371/journal.pone.0038639 29. Brownlee J. How to Use One-vs-Rest and One-vs-One for
27. Bloch L, Friedrich CM. Data analysis with shapley values for Multi-Class Classification. Machine Learning Mastery; 2020.
automatic subject selection in Alzheimer’s disease data sets Available from: https://machinelearningmastery.com/one-
using interpretable machine learning. Alzheimers Res Ther. vs-rest-and-one-vs-one-for-multi-class-classification [Last
2021;13(1):155. accessed on 2024 Apr 30].
Volume 2 Issue 3 (2025) 12 doi: 10.36922/DP025270031

