Page 121 - EER-2-2
P. 121

Explora: Environment
            and Resource                                                             Climate suitability of AWD practice



               Requirements). FAO Irrigation and Drainage Paper 56.   42.  Deacon C, Samways JM, Pryke SJ. Artificial reservoirs
               Vol. 300. Food and Agriculture Organization; 1998. p. 300.   complement natural ponds to improve pondscape resilience
               Available from: https://www.fao.org/4/x0490e/x0490e00.  in conservation corridors in a biodiversity hotspot.  PLoS
               htm [Last accessed on 2023 May 20].                One. 2018;13(9):e0204148.
            34.  Richards M, Sander BO.  Alternate  Wetting  and  Drying  in      doi: 10.1371/journal.pone.0204148
               Irrigated Rice. Practice Brief, Climate-Smart Agriculture,
               CGIAR; 2014. Available from: https://cgspace.cgiar.org/  43.  Choi RJ, Gwang-Jin J, Min-Soo H,  et al. Benthic
               server/api/core/bitstreams/b84fb569-3edf-4058-ba4b-  macroinvertebrate biodiversity improved with irrigation ponds
               73d4804d7412/content [Last accessed on 2025 Mar 11].  linked to a rice paddy field. Entomol Res. 2016;46:70-79.
            35.  Okello DM, Bonabana-Wabbi J, Mugonola B. Farm level      doi: 10.1111/1748-5967.12150
               allocative efficiency of rice production in Gulu and Amuru   44.  Warren DL, Seifert NS. Ecological niche modeling in Maxent:
               districts, Northern Uganda. Agric Food Econ. 2019;7(1):1-19.  The importance of model complexity and the performance
               doi: 10.1186/s40100-019-0140-x                     of model selection criteria. Ecol Appl. 2011;21(2):335-342.
            36.  Setyanto P, Pramono A, Adriany TA, et al. Alternate wetting      doi: 10.1890/10-1171.1
               and  drying  reduces  methane  emission from a  rice  paddy   45.  Merow C, Smith JM, Silander AJ Jr. A  practical guide
               in Central Java, Indonesia without yield loss. Soil Sci Plant   to MaxEnt for modeling species’ distributions: What it
               Nutr. 2018;64(1):23-30.
                                                                  does, and why inputs and settings matter.  Ecography.
               doi: 10.1080/00380768.2017.1409600                 2013;36:1058-1069.
            37.  Chidthaisong A, Cha-un N, Rossopa B, et al. Evaluating the      doi: 10.1111/j.1600-0587.2013.07872.x
               effects of alternate wetting and drying (AWD) on methane
               and nitrous oxide emissions from a paddy field in Thailand.   46.  Huang Z, Haung A, Dawson PT, Cong L. The effects of the
               Soil Sci Plant Nutr. 2017;64(1):31-38.             spatial extent on modelling giant panda distributions using
                                                                  ecological niche models. Sustainability. 2021;13(21):11707.
               doi: 10.1080/00380768.2017.1399044
                                                                  doi: 10.3390/su132111707
            38.  Sander BO, Wassmann R, Palao LK, Nelson A. Climate-
               based suitability assessment for alternate wetting and drying   47.  Oo AZ, Sudo S, Inubushi K,  et al. Mitigation potential
               water management in the Philippines: A novel approach for   and yield-scaled global warming potential of early-season
               mapping methane mitigation potential in rice production.   drainage from a rice paddy in Tamil Nadu, India.  Agron.
               Carbon Manag. 2017;8:4.                            2018;8(10):202.
               doi: 10.1080/17583004.2017.1362945                 doi: 10.3390/agronomy8100202
            39.  MWE.  Uganda National Climate Change Policy. MWE;   48.  Carrijo DR, Lundy ME, Linquist BA. Rice yields and water
               2015 Available from: https://www.mwe.go.ug/sites/default/  use under alternate wetting and drying irrigation: A meta-
               files/library/national%20climate%20change%20policy%20  analysis. Field Crops Res. 2017;203:173-180.
               april%202015%20final.pdf [Last accessed on 2024 Sep 20].
                                                                  doi: 10.1016/j.fcr.2016.12.002
            40.  Chen T, Yang X, Zuo Z, et al. Shallow wet irrigation reduces
               nitrogen leaching loss rate in paddy fields by microbial   49.  Mehta, C, Senthilkumar T, Imran, S. Automation of
               regulation and lowers rate of downward migration of   agricultural operations for sustainable rice production in the
               leaching water: A  15N-tracer study.  Front Plant Sci.   era of climate change: Automation of farm operations in rice
               2024;15:1340336.                                   cultivation. ORYZA Int J Rice. 2024;61(4):426-432.
               doi: 10.3389/fpls.2024.1340336                     doi: 10.35709/ory.2024.61.4.17
            41.  Kamruzzamana M, Hwang S, Choid S, et al. Prediction of the   50.  Khan AA, Chaudhari O, Chandra R. A review of ensemble
               effects of management practices on discharge and mineral   learning and data augmentation models for class imbalanced
               nitrogen yield from paddy fields under future climate using   problems:  Combination,  implementation and evaluation.
               APEX-paddy model. Agric Water Manage. 2020;241:106345.  Expert Syst Appl. 2023;244:122778.
               doi: 10.1016/j.agwat.2020.106345                   doi: 10.1016/j.eswa.2023.122778












            Volume 2 Issue 2 (2025)                         17                          doi: 10.36922/EER025040005
   116   117   118   119   120   121   122   123   124   125   126