Page 121 - EER-2-2
P. 121
Explora: Environment
and Resource Climate suitability of AWD practice
Requirements). FAO Irrigation and Drainage Paper 56. 42. Deacon C, Samways JM, Pryke SJ. Artificial reservoirs
Vol. 300. Food and Agriculture Organization; 1998. p. 300. complement natural ponds to improve pondscape resilience
Available from: https://www.fao.org/4/x0490e/x0490e00. in conservation corridors in a biodiversity hotspot. PLoS
htm [Last accessed on 2023 May 20]. One. 2018;13(9):e0204148.
34. Richards M, Sander BO. Alternate Wetting and Drying in doi: 10.1371/journal.pone.0204148
Irrigated Rice. Practice Brief, Climate-Smart Agriculture,
CGIAR; 2014. Available from: https://cgspace.cgiar.org/ 43. Choi RJ, Gwang-Jin J, Min-Soo H, et al. Benthic
server/api/core/bitstreams/b84fb569-3edf-4058-ba4b- macroinvertebrate biodiversity improved with irrigation ponds
73d4804d7412/content [Last accessed on 2025 Mar 11]. linked to a rice paddy field. Entomol Res. 2016;46:70-79.
35. Okello DM, Bonabana-Wabbi J, Mugonola B. Farm level doi: 10.1111/1748-5967.12150
allocative efficiency of rice production in Gulu and Amuru 44. Warren DL, Seifert NS. Ecological niche modeling in Maxent:
districts, Northern Uganda. Agric Food Econ. 2019;7(1):1-19. The importance of model complexity and the performance
doi: 10.1186/s40100-019-0140-x of model selection criteria. Ecol Appl. 2011;21(2):335-342.
36. Setyanto P, Pramono A, Adriany TA, et al. Alternate wetting doi: 10.1890/10-1171.1
and drying reduces methane emission from a rice paddy 45. Merow C, Smith JM, Silander AJ Jr. A practical guide
in Central Java, Indonesia without yield loss. Soil Sci Plant to MaxEnt for modeling species’ distributions: What it
Nutr. 2018;64(1):23-30.
does, and why inputs and settings matter. Ecography.
doi: 10.1080/00380768.2017.1409600 2013;36:1058-1069.
37. Chidthaisong A, Cha-un N, Rossopa B, et al. Evaluating the doi: 10.1111/j.1600-0587.2013.07872.x
effects of alternate wetting and drying (AWD) on methane
and nitrous oxide emissions from a paddy field in Thailand. 46. Huang Z, Haung A, Dawson PT, Cong L. The effects of the
Soil Sci Plant Nutr. 2017;64(1):31-38. spatial extent on modelling giant panda distributions using
ecological niche models. Sustainability. 2021;13(21):11707.
doi: 10.1080/00380768.2017.1399044
doi: 10.3390/su132111707
38. Sander BO, Wassmann R, Palao LK, Nelson A. Climate-
based suitability assessment for alternate wetting and drying 47. Oo AZ, Sudo S, Inubushi K, et al. Mitigation potential
water management in the Philippines: A novel approach for and yield-scaled global warming potential of early-season
mapping methane mitigation potential in rice production. drainage from a rice paddy in Tamil Nadu, India. Agron.
Carbon Manag. 2017;8:4. 2018;8(10):202.
doi: 10.1080/17583004.2017.1362945 doi: 10.3390/agronomy8100202
39. MWE. Uganda National Climate Change Policy. MWE; 48. Carrijo DR, Lundy ME, Linquist BA. Rice yields and water
2015 Available from: https://www.mwe.go.ug/sites/default/ use under alternate wetting and drying irrigation: A meta-
files/library/national%20climate%20change%20policy%20 analysis. Field Crops Res. 2017;203:173-180.
april%202015%20final.pdf [Last accessed on 2024 Sep 20].
doi: 10.1016/j.fcr.2016.12.002
40. Chen T, Yang X, Zuo Z, et al. Shallow wet irrigation reduces
nitrogen leaching loss rate in paddy fields by microbial 49. Mehta, C, Senthilkumar T, Imran, S. Automation of
regulation and lowers rate of downward migration of agricultural operations for sustainable rice production in the
leaching water: A 15N-tracer study. Front Plant Sci. era of climate change: Automation of farm operations in rice
2024;15:1340336. cultivation. ORYZA Int J Rice. 2024;61(4):426-432.
doi: 10.3389/fpls.2024.1340336 doi: 10.35709/ory.2024.61.4.17
41. Kamruzzamana M, Hwang S, Choid S, et al. Prediction of the 50. Khan AA, Chaudhari O, Chandra R. A review of ensemble
effects of management practices on discharge and mineral learning and data augmentation models for class imbalanced
nitrogen yield from paddy fields under future climate using problems: Combination, implementation and evaluation.
APEX-paddy model. Agric Water Manage. 2020;241:106345. Expert Syst Appl. 2023;244:122778.
doi: 10.1016/j.agwat.2020.106345 doi: 10.1016/j.eswa.2023.122778
Volume 2 Issue 2 (2025) 17 doi: 10.36922/EER025040005

