Page 26 - EER-2-3
P. 26

Explora: Environment
            and Resource                                                         Environmental contamination of titanium



               from natural ti nanomaterials in soil using spICP-TOFMS and   78.  Shezi B, Street RA, Webster C, Kunene Z, Mathee A. Heavy
               machine learning. Environ Sci Technol. 2022;56(5):2990-3001.  metal contamination of soil in preschool facilities around
               doi: 10.1021/acs.est.1c02950                       industrial operations, kuils river, cape town (South Africa).
                                                                  Int J Environ Res Public Health. 2022;19(7):4380.
            69.  Karkee H, Gundlach-Graham A. Characterization and
               quantification of natural and anthropogenic titanium-     doi: 10.3390/ijerph19074380
               containing particles using single-particle ICP-TOFMS.   79.  Wang T, Huang X, Jiang X, Hu M, Huang W, Wang Y.
               Environ Sci Technol. 2023;57(37):14058-14070.      Differential  in vivo hemocyte responses to nano titanium
               doi: 10.1021/acs.est.3c04473                       dioxide in mussels: Effects of particle size.  Aquat Toxicol.
                                                                  2019;212:28-36.
            70.  Oliva SR, Espinosa AJF. Monitoring of heavy metals
               in  topsoils,  atmospheric  particles  and  plant  leaves  to      doi: 10.1016/j.aquatox.2019.04.012
               identify possible contamination sources.  Microchem J.   80.  Zhang M, Li X, Yang R, et al. Multipotential toxic metals
               2007;86(1):131-139.                                accumulated in urban soil and street dust from Xining City,
               doi: 10.1016/j.microc.2007.01.003                  NW China: Spatial occurrences, sources, and health risks.
                                                                  Arch Environ Contam Toxicol. 2019;76(2):308-330.
            71.  Abdu N, Agbenin JO, Buerkert A. Geochemical
               assessment, distribution, and dynamics of trace elements      doi: 10.1007/s00244-018-00592-8
               in urban agricultural soils under long‐term wastewater   81.  Wang W, Wang X, Liu X, et al. Spatial distribution of the
               irrigation in Kano, northern Nigeria. J Plant Nutr Soil Sci.   critical mineral resource element titanium in China and its
               2011;174(3):447-458.                               influencing factors. J Geochem Explor. 2024;256:107334.
               doi: 10.1002/jpln.201000333                        doi: 10.1016/j.gexplo.2023.107334
            72.  Baalousha M, Wang J, Nabi MM, et al. Stormwater green   82.  Tepanosyan G, Sahakyan L, Zhang C, Saghatelyan A. The
               infrastructures retain high concentrations of TiO  engineered   application of local moran’s I to identify spatial clusters and
                                                  2
               (nano)-particles. J Hazard Mater. 2020;392:122335.  hot spots of Pb, mo and ti in urban soils of Yerevan. Appl
               doi: 10.1016/j.jhazmat.2020.122335                 Geochem. 2019;104:116-123.
            73.  Agyeman PC, Ahado SK, Kingsley J,  et al. Source      doi: 10.1016/j.apgeochem.2019.03.022
               apportionment, contamination levels, and spatial prediction   83.  Al-Swadi HA, Usman ARA, Al-Farraj AS, Al-Wabel MI,
               of potentially toxic elements in selected soils of the Czech   Ahmad M, Al-Faraj A. Sources, toxicity potential, and
               republic. Environ Geochem Health. 2021;43(1):601-620.  human health risk assessment of heavy metals-laden soil and
               doi: 10.1007/s10653-020-00743-8                    dust of urban and suburban areas as affected by industrial
                                                                  and mining activities. Sci Rep. 2022;12(1):8972.
            74.  De Lima MW, Hamid SS, De Souza ES, et al. Geochemical
               background concentrations of potentially toxic elements      doi: 10.1038/s41598-022-12345-8
               in soils of the carajás mineral province, southeast of the   84.  Migaszewski ZM, Gałuszka A. Hydrothermal TiO
               amazonian craton. Environ Monit Assess. 2020;192(10):649.  polymorphs in a pyrite stratiform deposit: Lessons from a  2
               doi: 10.1007/s10661-020-08611-9                    mineralogical and geochemical multiproxy record.  Chem
                                                                  Geol. 2023;632:121551.
            75.  Agnan Y, Courault R, Alexis MA,  et al. Distribution of
               trace and major elements in subarctic ecosystem soils:      doi: 10.1016/j.chemgeo.2023.121551
               Sources and influence of vegetation.  Sci Total Environ.   85.  Wang S, Cai LM, Wen HH, Luo J, Wang QS, Liu X. Spatial
               2019;682:650-662.                                  distribution and source apportionment of heavy metals in
               doi: 10.1016/j.scitotenv.2019.05.178               soil from a typical county-level city of Guangdong Province,
                                                                  China. Sci Total Environ. 2019;655:92-101.
            76.  Lian Z, Zhao X, Gu X, Li X, Luan M, Yu M. Presence, sources,
               and risk assessment of heavy metals in the upland soils of      doi: 10.1016/j.scitotenv.2018.11.244
               northern China using Monte Carlo simulation. Ecotoxicol   86.  Sadiq IM, Dalai S, Chandrasekaran N, Mukherjee A.
               Environ Saf. 2022;230:113154.                      Corrigendum to “ecotoxicity study of titania (TiO ) NPs on
                                                                                                      2
               doi: 10.1016/j.ecoenv.2021.113154                  two microalgae species: Scenedesmus sp. and Chlorella sp”.
                                                                  Ecotoxicol Environ Saf. 2011;142:597.
            77.  Négrel  P,  Ladenberger  A,  Reimann  C,  et al.  GEMAS:
               Chemical weathering of silicate parent materials revealed by      doi: 10.1016/j.ecoenv.2017.04.029
               agricultural soil of Europe. Chem Geol. 2023;639:121732.
                                                               87.  Hong F, Zhou J, Liu C,  et al. Effect of nano-TiO2 on
               doi: 10.1016/j.chemgeo.2023.121732                 photochemical  reaction  of chloroplasts of  spinach.  Biol




            Volume 2 Issue 3 (2025)                         20                          doi: 10.36922/EER025130027
   21   22   23   24   25   26   27   28   29   30   31