Page 25 - EER-2-3
P. 25

Explora: Environment
            and Resource                                                         Environmental contamination of titanium



            47.  Steinmetz GL, Mohan MS, Zingaro RA. Characterization of      doi: 10.1016/j.geomorph.2009.05.013
               titanium in United States coals. Energy Fuels. 1988;2(5):684-692.
                                                               58.  Adamiec E, Jarosz-Krzemińska E, Wieszała R. Heavy metals
               doi: 10.1021/ef00011a015                           from non-exhaust vehicle emissions in urban and motorway
                                                                  road dusts. Environ Monit Assess. 2016;188(6):369.
            48.  Shan Y, Wang W, Qin Y. Data on trace element concentrations
               in coal and host rock  and  leaching product in different      doi: 10.1007/s10661-016-5377-1
               pH  values  and  open/closed  environments.  Data Brief.   59.  Ravisankar  R,  Sivakumar  S,  Chandrasekaran  A,
               2019;25:104053.
                                                                  Kanagasabapathy KV, Prasad MV, Satapathy KK. Statistical
               doi: 10.1016/j.dib.2019.104053                     assessment of heavy metal pollution in sediments of east coast
                                                                  of Tamilnadu using energy dispersive X-ray fluorescence
            49.  Wu X, Wang H, Wang Y. A review: Synthesis and applications
               of titanium sub-oxides. Materials (Basel). 2023;16(21):6874.  spectroscopy (EDXRF). Appl Radiat Isot. 2015;102:42-47.
                                                                  doi:10.1016/j.apradiso.2015.03.018
               doi: 10.3390/ma16216874
                                                               60.  Harikrishnan N, Ravisankar R, Chandrasekaran A,
            50.  Zeman T, Loh EW, Čierný D, Šerý O. Penetration, distribution   et al. Assessment of heavy metal contamination in marine
               and  brain  toxicity  of  titanium  nanoparticles  in  rodents’   sediments of east coast of Tamil nadu affected by different
               body: A review. IET Nanobiotechnol. 2018;12(6):695-700.  pollution sources. Mar Pollut Bull. 2017;121(1-2):418-424.
               doi: 10.1049/iet-nbt.2017.0109                     doi: 10.1016/j.marpolbul.2017.05.047
            51.  Yanguo T, Xianguo T, Shijun N, Chengjiang Z, Zhengqi X.   61.  Yang Y, Chen B, Hower J, et al. Discovery and ramifications
               Environmental geochemistry of heavy metal contaminants   of incidental magnéli phase generation and release from
               in soil and stream sediment in Panzhihua mining and   industrial coal-burning. Nat Commun. 2017;8(1):194.
               smelting area, Southwestern China.  Chin  J Geochem.
               2003;22(3):253-262.                                doi: 10.1038/s41467-017-00276-2
                                                               62.  Slomberg DL, Auffan M, Guéniche N, et al. Anthropogenic
               doi: 10.1007/bf02842869
                                                                  release and distribution of titanium dioxide particles in a
            52.  Maina  DM,  Ndirangu  DM,  Mangala  MM,  Boman  J,   river downstream of a nanomaterial manufacturer industrial
               Shepherd K, Gatari MJ. Environmental implications of high   site. Front Environ Sci. 2020;8:76.
               metal content in soils of a titanium mining zone in Kenya.
               Environ Sci Pollut Res Int. 2016;23(21):21431-21440.     doi: 10.3389/fenvs.2020.00076
                                                               63.  Vidmar J,  Zuliani T, Milačič R,  Ščančar J. Following the
               doi: 10.1007/s11356-016-7249-1
                                                                  occurrence  and  origin  of titanium dioxide  nanoparticles
            53.  Osoro QA.  Assessment of Heavy Metals and Radioactivity   in the sava river by single particle ICP-MS.  Water.
               of the Soil Around Titanium Mining in Kinondo Area, Kwale   2022;14(6):959.
               County. Kenya: University of Nairobi; 2021.
                                                                  doi: 10.3390/w14060959
            54.  Negral L, Suárez-Peña B, Zapico E,  et al. Anthropogenic
               and meteorological influences on PM10 metal/semi-  64.  Förstner U, Müller G. Concentrations of heavy metals
               metal concentrations: Implications for human health.   and polycyclic aromatic hydrocarbons in river sediments:
               Chemosphere. 2020;243:125347.                      Geochemical  background,  man’s  influence  and
                                                                  environmental impact. GeoJournal. 1981;5(5):417-432.
               doi: 10.1016/j.chemosphere.2019.125347
                                                                  doi: 10.1007/bf02484715
            55.  Nabi MM, Wang J, Baalousha M. Detection and
               quantification of anthropogenic titanium-, cerium-, and   65.  Kabata-Pendias A, Pendias H. Trace Elements in Soils and
                                                                        rd
               lanthanum-bearing home  dust particles.  Environ Sci   Plants. 3  ed. Raton Boca: CRC Press; 2001.
               Nano. 2023;10(5):1372-1384.                     66.  Wang H, Wick RL, Xing B. Toxicity of nanoparticulate and
                                                                  bulk ZnO, Al2O3 and TiO2 to the Nematoda Caenorhabditis
               doi: 10.1039/d2en00890d
                                                                  elegans. Environ Pollut. 2009;157(4):1171-1177.
            56.  Luo H, Wang Q, Guan Q,  et al. Heavy metal pollution
               levels, source apportionment and risk assessment in dust      doi: 10.1016/j.envpol.2008.11.004
               storms in key cities in Northwest China. J Hazard Mater.   67.  Pradas Del Real AE, Castillo-Michel H, Kaegi R,  et al.
               2022;422:126878.                                   Searching for relevant criteria to distinguish natural vs.
                                                                  Anthropogenic  TiO  nanoparticles in soils.  Environ  Sci
               doi: 10.1016/j.jhazmat.2021.126878                                2
                                                                  Nano. 2018;5(12):2853-2863.
            57.  Wang X, Dong Z, Zhang C, Qian G, Luo W. Characterization
               of the composition of dust fallout and identification of dust      doi: 10.1039/c8en00386f
               sources in arid and semiarid North China. Geomorphology.   68.  Bland GD, Battifarano M, Pradas Del Real AE, Sarret G,
               2009;112(1-2):144-157.                             Lowry GV. Distinguishing engineered TiO  nanomaterials
                                                                                                  2


            Volume 2 Issue 3 (2025)                         19                          doi: 10.36922/EER025130027
   20   21   22   23   24   25   26   27   28   29   30