Page 25 - EER-2-3
P. 25
Explora: Environment
and Resource Environmental contamination of titanium
47. Steinmetz GL, Mohan MS, Zingaro RA. Characterization of doi: 10.1016/j.geomorph.2009.05.013
titanium in United States coals. Energy Fuels. 1988;2(5):684-692.
58. Adamiec E, Jarosz-Krzemińska E, Wieszała R. Heavy metals
doi: 10.1021/ef00011a015 from non-exhaust vehicle emissions in urban and motorway
road dusts. Environ Monit Assess. 2016;188(6):369.
48. Shan Y, Wang W, Qin Y. Data on trace element concentrations
in coal and host rock and leaching product in different doi: 10.1007/s10661-016-5377-1
pH values and open/closed environments. Data Brief. 59. Ravisankar R, Sivakumar S, Chandrasekaran A,
2019;25:104053.
Kanagasabapathy KV, Prasad MV, Satapathy KK. Statistical
doi: 10.1016/j.dib.2019.104053 assessment of heavy metal pollution in sediments of east coast
of Tamilnadu using energy dispersive X-ray fluorescence
49. Wu X, Wang H, Wang Y. A review: Synthesis and applications
of titanium sub-oxides. Materials (Basel). 2023;16(21):6874. spectroscopy (EDXRF). Appl Radiat Isot. 2015;102:42-47.
doi:10.1016/j.apradiso.2015.03.018
doi: 10.3390/ma16216874
60. Harikrishnan N, Ravisankar R, Chandrasekaran A,
50. Zeman T, Loh EW, Čierný D, Šerý O. Penetration, distribution et al. Assessment of heavy metal contamination in marine
and brain toxicity of titanium nanoparticles in rodents’ sediments of east coast of Tamil nadu affected by different
body: A review. IET Nanobiotechnol. 2018;12(6):695-700. pollution sources. Mar Pollut Bull. 2017;121(1-2):418-424.
doi: 10.1049/iet-nbt.2017.0109 doi: 10.1016/j.marpolbul.2017.05.047
51. Yanguo T, Xianguo T, Shijun N, Chengjiang Z, Zhengqi X. 61. Yang Y, Chen B, Hower J, et al. Discovery and ramifications
Environmental geochemistry of heavy metal contaminants of incidental magnéli phase generation and release from
in soil and stream sediment in Panzhihua mining and industrial coal-burning. Nat Commun. 2017;8(1):194.
smelting area, Southwestern China. Chin J Geochem.
2003;22(3):253-262. doi: 10.1038/s41467-017-00276-2
62. Slomberg DL, Auffan M, Guéniche N, et al. Anthropogenic
doi: 10.1007/bf02842869
release and distribution of titanium dioxide particles in a
52. Maina DM, Ndirangu DM, Mangala MM, Boman J, river downstream of a nanomaterial manufacturer industrial
Shepherd K, Gatari MJ. Environmental implications of high site. Front Environ Sci. 2020;8:76.
metal content in soils of a titanium mining zone in Kenya.
Environ Sci Pollut Res Int. 2016;23(21):21431-21440. doi: 10.3389/fenvs.2020.00076
63. Vidmar J, Zuliani T, Milačič R, Ščančar J. Following the
doi: 10.1007/s11356-016-7249-1
occurrence and origin of titanium dioxide nanoparticles
53. Osoro QA. Assessment of Heavy Metals and Radioactivity in the sava river by single particle ICP-MS. Water.
of the Soil Around Titanium Mining in Kinondo Area, Kwale 2022;14(6):959.
County. Kenya: University of Nairobi; 2021.
doi: 10.3390/w14060959
54. Negral L, Suárez-Peña B, Zapico E, et al. Anthropogenic
and meteorological influences on PM10 metal/semi- 64. Förstner U, Müller G. Concentrations of heavy metals
metal concentrations: Implications for human health. and polycyclic aromatic hydrocarbons in river sediments:
Chemosphere. 2020;243:125347. Geochemical background, man’s influence and
environmental impact. GeoJournal. 1981;5(5):417-432.
doi: 10.1016/j.chemosphere.2019.125347
doi: 10.1007/bf02484715
55. Nabi MM, Wang J, Baalousha M. Detection and
quantification of anthropogenic titanium-, cerium-, and 65. Kabata-Pendias A, Pendias H. Trace Elements in Soils and
rd
lanthanum-bearing home dust particles. Environ Sci Plants. 3 ed. Raton Boca: CRC Press; 2001.
Nano. 2023;10(5):1372-1384. 66. Wang H, Wick RL, Xing B. Toxicity of nanoparticulate and
bulk ZnO, Al2O3 and TiO2 to the Nematoda Caenorhabditis
doi: 10.1039/d2en00890d
elegans. Environ Pollut. 2009;157(4):1171-1177.
56. Luo H, Wang Q, Guan Q, et al. Heavy metal pollution
levels, source apportionment and risk assessment in dust doi: 10.1016/j.envpol.2008.11.004
storms in key cities in Northwest China. J Hazard Mater. 67. Pradas Del Real AE, Castillo-Michel H, Kaegi R, et al.
2022;422:126878. Searching for relevant criteria to distinguish natural vs.
Anthropogenic TiO nanoparticles in soils. Environ Sci
doi: 10.1016/j.jhazmat.2021.126878 2
Nano. 2018;5(12):2853-2863.
57. Wang X, Dong Z, Zhang C, Qian G, Luo W. Characterization
of the composition of dust fallout and identification of dust doi: 10.1039/c8en00386f
sources in arid and semiarid North China. Geomorphology. 68. Bland GD, Battifarano M, Pradas Del Real AE, Sarret G,
2009;112(1-2):144-157. Lowry GV. Distinguishing engineered TiO nanomaterials
2
Volume 2 Issue 3 (2025) 19 doi: 10.36922/EER025130027

