Page 117 - ESAM-1-2
P. 117
Engineering Science in
Additive Manufacturing HIP temperature effects on LPBF Hastelloy X
2021;224:109202. laser powder-bed fusion: Insights into effects of carbides
doi: 10.1016/j.compositesb.2021.109202 and cellular structure at elevated temperatures. J Manufact
Processes. 2023;108:165-179.
38. Zhang S, Lin X, Wang L, et al. Strengthening mechanisms in
selective laser-melted inconel718 superalloy. Mater Sci Eng doi: 10.1016/j.jmapro.2023.10.083
A. 2021;812:141145. 41. Wu S, Dai SB, Heilmaier M, et al. The effect of carbides on
doi: 10.1016/j.msea.2021.141145 the creep performance of hastelloy X fabricated by laser
powder bed fusion. Mater Sci Eng A. 2023;875:145116.
39. Liu M, Zhang K, Liu J, et al. High-temperature high cycle
fatigue performance of laser powder bed fusion fabricated doi: 10.1016/j.msea.2023.145116
hastelloy X: Study into the microstructure and oxidation 42. Marchese G, Basile G, Bassini E, et al. Study of the
effects. Mater Design. 2024;243:113037. microstructure and cracking mechanisms of hastelloy X
doi: 10.1016/j.matdes.2024.113037 produced by laser powder bed fusion. Materials (Basel).
2018;11:106.
40. Sun Y, Huang R, Lin D, et al. Investigation of deformation
mechanisms in hastelloy X superalloy manufactured via doi: 10.3390/ma11010106
Volume 1 Issue 2 (2025) 15 doi: 10.36922/ESAM025240015

