Page 115 - ESAM-1-2
P. 115

Engineering Science in
            Additive Manufacturing                                           HIP temperature effects on LPBF Hastelloy X



            Writing – review & editing: Yiming Sun, Xiaohui Zhou,   mechanical response of as-built and solution-annealed
               Swee Leong Sing                                    LPBF hastelloy X under high-temperature fatigue loading.
                                                                  Add Manufact Lett. 2024;10:100227.
            Ethics approval and consent to participate            doi: 10.1016/j.addlet.2024.100227

            Not applicable.                                    9.   Li R, Cheng L, Liu J,  et al. Modeling and analysis of the
                                                                  mechanical anisotropy of hastelloy X alloy fabricated by laser
            Consent for publication                               powder bed fusion. J Mater Res Technol. 2024;33:7949-7960.
            Not applicable.                                       doi: 10.1016/j.jmrt.2024.11.148
            Availability of data                               10.  Kong D, Ni X, Dong C,  et al. Anisotropic response in
                                                                  mechanical and corrosion properties of hastelloy X
            All data analyzed have been presented in the paper.   fabricated by selective laser melting.  Constr Build Mater.
                                                                  2019;221:720-729.
            References
                                                                  doi: 10.1016/j.conbuildmat.2019.06.132
            1.   Pourbabak S, Montero-Sistiaga ML, Schryvers D, Van
               Humbeeck J, Vanmeensel K. Microscopic investigation of   11.  Li  C,  Liu  Y,  Shu  T, Guan W,  Wang  S.  Effect  of  solution
                                                                  heat  treatment  on  microstructure,  mechanical  and
               as built and hot isostatic pressed hastelloy X processed by
               selective laser melting. Mater Charact. 2019;153:366-371.  electrochemical properties of hastelloy X fabricated by laser
                                                                  powder bed fusion. J Mater Res Technol. 2023;24:1499-1512.
               doi: 10.1016/j.matchar.2019.05.024
                                                                  doi: 10.1016/j.jmrt.2023.03.108
            2.   Iveković  A,  Montero-Sistiaga  ML,  Vleugels  J,  Kruth  JP,   12.  Liu G, Li B, Zhang S,  et al. Effect of Fe-based metallic
               Vanmeensel K. Crack mitigation in laser powder bed
               fusion processed hastelloy X using a combined numerical-  glass on microstructure and properties of hastelloy X
               experimental approach. J Alloys Compd. 2021;864:158803.  manufactured by laser powder bed fusion. J Alloys Compd.
                                                                  2023;966:171561.
               doi: 10.1016/j.jallcom.2021.158803
                                                                  doi: 10.1016/j.jallcom.2023.171561
            3.   Xu L, Gao Y, Zhao L, Han Y, Jing H. Ultrasonic micro-  13.  Xie Y, Teng Q, Shen M, et al. The role of overlap region width
               forging post-treatment assisted laser directed energy
               deposition approach to manufacture high-strength hastelloy   in multi-laser powder bed fusion of hastelloy X superalloy.
                                                                  Virtual Phys Prototyp. 2023;18:e2142802.
               X superalloy. J Mater Proc Technol. 2022;299:117324.
                                                                  doi: 10.1080/17452759.2022.2142802
               doi: 10.1016/j.jmatprotec.2021.117324
                                                               14.  Keshavarzkermani  A,  Esmaeilizadeh  R,  Enrique  PD,
            4.   Blakey-Milner B, Gradl P, Snedden G, et al. Metal additive
               manufacturing in aerospace: A  review.  Mater Design.   et al. Static recrystallization impact on grain structure
                                                                  and mechanical properties of heat-treated hastelloy X
               2021;209:110008.
                                                                  produced via laser powder-bed fusion.  Mater  Charact.
               doi: 10.1016/j.matdes.2021.110008                  2021;173:110969.
            5.   Kalender M, Kılıç SE, Ersoy S, Bozkurt Y, Salman S. Additive      doi: 10.1016/j.matchar.2021.110969
               manufacturing and 3D printer technology in aerospace
               industry.  2019  9   International Conference on Recent   15.  Cheng X, Du Z, Chu S, et al. The effect of subsequent heating
                             th
                                                                  treatment on the microstructure and mechanical properties
               Advances in Space Technologies (RAST). 2019. p. 689-694.
                                                                  of additive manufactured hastelloy X alloy. Mater Charact.
               doi: 10.1109/RAST.2019.8767881                     2022;186:111799.
            6.   Yu CH, Peng RL, Lee TL, Luzin V, Lundgren JE, Moverare J.      doi: 10.1016/j.matchar.2022.111799
               Anisotropic  behaviours  of  LPBF  hastelloy  X  under  slow   16.  Ma Q, Dong K, Li F, et al. Recent progress in electromagnetic
               strain rate tensile testing at elevated temperature. Mater Sci   microwave  absorption of  additively manufactured
               Eng A. 2022;844:143174.
                                                                  carbon fiber-reinforced polymer structures.  ESAM.
               doi: 10.1016/j.msea.2022.143174                    2025;1:025160008.
            7.   Markovic P, Scheel P, Wróbel R, Leinenbach C, Mazza E,      doi: 10.36922/ESAM025160008
               Hosseini E. Cyclic mechanical response of LPBF hastelloy X   17.  Chan YY, Chao Y, Kuo CN. Mechanical properties and
               over a wide temperature and strain range: Experiments and   energy absorption capability improvement of Ti-6Al-4V
               modeling. Int J Solids Struct. 2024;305:113047.
                                                                  porous  materials  through  porous  structure  design
               doi: 10.1016/j.ijsolstr.2024.113047                optimization. ESAM. 2025;1:025170009.
            8.   Li  X,  Esmaeilizadeh  R,  Hosseini  E.  Microstructure  and      doi: 10.36922/ESAM025170009


            Volume 1 Issue 2 (2025)                         13                         doi: 10.36922/ESAM025240015
   110   111   112   113   114   115   116   117   118   119   120