Page 115 - ESAM-1-2
P. 115
Engineering Science in
Additive Manufacturing HIP temperature effects on LPBF Hastelloy X
Writing – review & editing: Yiming Sun, Xiaohui Zhou, mechanical response of as-built and solution-annealed
Swee Leong Sing LPBF hastelloy X under high-temperature fatigue loading.
Add Manufact Lett. 2024;10:100227.
Ethics approval and consent to participate doi: 10.1016/j.addlet.2024.100227
Not applicable. 9. Li R, Cheng L, Liu J, et al. Modeling and analysis of the
mechanical anisotropy of hastelloy X alloy fabricated by laser
Consent for publication powder bed fusion. J Mater Res Technol. 2024;33:7949-7960.
Not applicable. doi: 10.1016/j.jmrt.2024.11.148
Availability of data 10. Kong D, Ni X, Dong C, et al. Anisotropic response in
mechanical and corrosion properties of hastelloy X
All data analyzed have been presented in the paper. fabricated by selective laser melting. Constr Build Mater.
2019;221:720-729.
References
doi: 10.1016/j.conbuildmat.2019.06.132
1. Pourbabak S, Montero-Sistiaga ML, Schryvers D, Van
Humbeeck J, Vanmeensel K. Microscopic investigation of 11. Li C, Liu Y, Shu T, Guan W, Wang S. Effect of solution
heat treatment on microstructure, mechanical and
as built and hot isostatic pressed hastelloy X processed by
selective laser melting. Mater Charact. 2019;153:366-371. electrochemical properties of hastelloy X fabricated by laser
powder bed fusion. J Mater Res Technol. 2023;24:1499-1512.
doi: 10.1016/j.matchar.2019.05.024
doi: 10.1016/j.jmrt.2023.03.108
2. Iveković A, Montero-Sistiaga ML, Vleugels J, Kruth JP, 12. Liu G, Li B, Zhang S, et al. Effect of Fe-based metallic
Vanmeensel K. Crack mitigation in laser powder bed
fusion processed hastelloy X using a combined numerical- glass on microstructure and properties of hastelloy X
experimental approach. J Alloys Compd. 2021;864:158803. manufactured by laser powder bed fusion. J Alloys Compd.
2023;966:171561.
doi: 10.1016/j.jallcom.2021.158803
doi: 10.1016/j.jallcom.2023.171561
3. Xu L, Gao Y, Zhao L, Han Y, Jing H. Ultrasonic micro- 13. Xie Y, Teng Q, Shen M, et al. The role of overlap region width
forging post-treatment assisted laser directed energy
deposition approach to manufacture high-strength hastelloy in multi-laser powder bed fusion of hastelloy X superalloy.
Virtual Phys Prototyp. 2023;18:e2142802.
X superalloy. J Mater Proc Technol. 2022;299:117324.
doi: 10.1080/17452759.2022.2142802
doi: 10.1016/j.jmatprotec.2021.117324
14. Keshavarzkermani A, Esmaeilizadeh R, Enrique PD,
4. Blakey-Milner B, Gradl P, Snedden G, et al. Metal additive
manufacturing in aerospace: A review. Mater Design. et al. Static recrystallization impact on grain structure
and mechanical properties of heat-treated hastelloy X
2021;209:110008.
produced via laser powder-bed fusion. Mater Charact.
doi: 10.1016/j.matdes.2021.110008 2021;173:110969.
5. Kalender M, Kılıç SE, Ersoy S, Bozkurt Y, Salman S. Additive doi: 10.1016/j.matchar.2021.110969
manufacturing and 3D printer technology in aerospace
industry. 2019 9 International Conference on Recent 15. Cheng X, Du Z, Chu S, et al. The effect of subsequent heating
th
treatment on the microstructure and mechanical properties
Advances in Space Technologies (RAST). 2019. p. 689-694.
of additive manufactured hastelloy X alloy. Mater Charact.
doi: 10.1109/RAST.2019.8767881 2022;186:111799.
6. Yu CH, Peng RL, Lee TL, Luzin V, Lundgren JE, Moverare J. doi: 10.1016/j.matchar.2022.111799
Anisotropic behaviours of LPBF hastelloy X under slow 16. Ma Q, Dong K, Li F, et al. Recent progress in electromagnetic
strain rate tensile testing at elevated temperature. Mater Sci microwave absorption of additively manufactured
Eng A. 2022;844:143174.
carbon fiber-reinforced polymer structures. ESAM.
doi: 10.1016/j.msea.2022.143174 2025;1:025160008.
7. Markovic P, Scheel P, Wróbel R, Leinenbach C, Mazza E, doi: 10.36922/ESAM025160008
Hosseini E. Cyclic mechanical response of LPBF hastelloy X 17. Chan YY, Chao Y, Kuo CN. Mechanical properties and
over a wide temperature and strain range: Experiments and energy absorption capability improvement of Ti-6Al-4V
modeling. Int J Solids Struct. 2024;305:113047.
porous materials through porous structure design
doi: 10.1016/j.ijsolstr.2024.113047 optimization. ESAM. 2025;1:025170009.
8. Li X, Esmaeilizadeh R, Hosseini E. Microstructure and doi: 10.36922/ESAM025170009
Volume 1 Issue 2 (2025) 13 doi: 10.36922/ESAM025240015

