Page 83 - GHES-2-1
P. 83
Global Health Econ Sustain Quantum Data Lake for epidemic analysis
192(4):658-664. Orús, R. (2019). Tensor networks for complex quantum systems.
Nature Reviews Physics, 1:538-550.
https://doi.org/10.1093/aje/kwad007
https://doi.org/10.1038/s42254-019-0086-7
McInnes, L., Healy, J., & Melville, J. (2020). UMAP: Uniform
Manifold Approximation and Projection for Dimension Özdemir, Ş.K., Rotter, S., Nori, F., & Yang , L. (2019). Parity-time
Reduction. [Preprint arXiv]. symmetry and exceptional points in photonics. Nature
Materials, 18:783-798.
https://doi.org/10.48550/arXiv.1802.03426
https://doi.org/10.1038/s41563-019-0304-9
Melkani, A. (2023). Degeneracies and symmetry breaking in
pseudo-Hermitian matrices. Physical Review Research, Pathak, A. (2013). Non-Hermitian Quantum Gates are more
5(2):023035. Common than Hermitian Quantum Gates. [Preprint arXiv].
https://doi.org/10.1103/PhysRevResearch.5.023035 https://doi.org/10.48550/arXiv.1309.4037
Mittelstadt, B., Benzler, J., Engelmann, L., Prainsack, B., & Pati, A.K. (2009). Entanglement in non-Hermitian quantum
Vayena, E. (2018). Is there a duty to participate in digital theory. Pramana - Journal of Physics, 73(3):485-498.
epidemiology? Life Sciences, Society and Policy, 14:9. https://doi.org/10.1007/s12043-009-0101-0
https://doi.org/10.1186/s40504-018-0074-1 Pérez-García, D., Verstraete, F., Wolf, M.M., & Cirac, J.I. (2008).
Monroe, C., Raussendorf, R., Ruthven, A., Brown, K.R., PEPS as Unique ground states of local Hamiltonians.
Maunz, P., Duan, L.M., et al. (2014). Large-scale modular Quantum Information and Computation, 8(6):650-663.
quantum-computer architecture with atomic memory and https://doi/10.5555/2016976.2016982
photonic interconnects. Physical Review A, 89(2):022317.
Pomorski, K. (2020). Equivalence between Classical Epidemic
https://doi.org/10.1103/PhysRevA.89.022317 Model and Non-dissipative and Dissipative Quantum Tight-
Montangero, S. (2018). Introduction to Tensor Network Methods. binding Model. [Preprint arXiv].
Numerical Simulations of Low-dimensional Many-body https://doi.org/10.48550/arXiv.2012.09923
Quantum Systems. Cham, Switzerland: Springer.
Rahimi, I., Chen, F., & Gandomi, A.H. (2021). A review on
https://doi.org/10.1007/978-3-030-01409-4 COVID-19 forecasting models. Neural Computing and
Naghiloo, M., Abbasi, M., Joglekar, Y.N., & Murch, K.W. (2019). Applications, 35:23671-23681.
Quantum state tomography across the exceptional point in a https://doi.org/10.1007/s00521-020-05626-8
single dissipative qubit. Nature Physics, 15:1232-1236.
Rasmussen, S.E., & Zinner, N.T. (2020). Simple implementation
https://doi.org/10.1038/s41567-019-0652-z of high fidelity controlled-iSWAP gates and quantum circuit
Nakahara, M., & Ohmi, T. (2008). Quantum Computing: From exponentiation of non-Hermitian gates. Physical Review
Linear Algebra to Physical Realizations. Boca Raton, FL, Research, 2(3):033097.
USA: CRC Press, Taylor & Francis Group. Available from: https://doi.org/10.1103/PhysRevResearch.2.033097
https://www.routledge.com/quantum-computing-from-
linear-algebra-to-physical-realizations/nakahara-ohmi/p/ Rath, B. (2020). Generating (2x2) PT-symmetric matrices using
book/9780750309837 [Last accessed on 2023 May 10]. Pauli matrices as parity operator: broken spectra and stop
light in unbroken spectra at unequal points. European
National Academies of Sciences, Engineering, and Medicine. Journal of Mathematics and Computer Science, 7(1): 1-9.
(2019). Quantum Computing: Progress and Prospects.
Washington, DC, USA: The National Academies Press. Rieffel, E., & Polak, W. (2014). Quantum Computing: A Gentle
Available from: https://nap.nationalacademies.org/ Introduction. Cambridge, MA, USA: The MIT Press.
catalog/25196/quantum-computing-progress-and- Available from: https://mitpress.mit.edu/books/quantum-
prospects [Last accessed on 2023 Sep 10]. computing [Last accessed on 2023 Feb 17].
Rischke, E. (2021). Symmetries in Quantum Mechanics and
https://doi.org/10.17226/25196
Particle Physics. Frankfurt Digital Summer School. Available
Ng, Y.J., & Van Dam, H. (2009). Projective geometry and from: https://itp.uni-frankfurt.de/~drischke/script_
PT-symmetric Dirac Hamiltonian. Physics Letters B, symmetries_gu2021.pdf [Last accessed on 2023 Feb 05].
673(3):237-239.
Robson, B. (2007). The new physician as unwitting quantum
https://doi.org/10.1016/j.physletb.2009.02.034 Mechanic: Is adapting Dirac’s inference system best practice
for personalized medicine, genomics, and proteomics?
Orús, R. (2014). A practical introduction to tensor networks:
Matrix product states and projected entangled pair states. Journal of Proteome Research, 6(8):3114-3126.
Annals of Physics, 349:117-158. https://doi.org/10.1021/pr070098h
https://doi.org/10.1016/j.aop.2014.06.013 Robson, B., & Caruso, T.P. (2013). A Universal Exchange Language
Volume 2 Issue 1 (2024) 32 https://doi.org/10.36922/ghes.2148

