Page 83 - GHES-2-1
P. 83

Global Health Econ Sustain                                          Quantum Data Lake for epidemic analysis



               192(4):658-664.                                 Orús, R. (2019). Tensor networks for complex quantum systems.
                                                                  Nature Reviews Physics, 1:538-550.
               https://doi.org/10.1093/aje/kwad007
                                                                  https://doi.org/10.1038/s42254-019-0086-7
            McInnes, L., Healy, J., & Melville, J. (2020). UMAP: Uniform
               Manifold Approximation and Projection for Dimension   Özdemir, Ş.K., Rotter, S., Nori, F., & Yang , L. (2019). Parity-time
               Reduction. [Preprint arXiv].                       symmetry and exceptional points in photonics.  Nature
                                                                  Materials, 18:783-798.
               https://doi.org/10.48550/arXiv.1802.03426
                                                                  https://doi.org/10.1038/s41563-019-0304-9
            Melkani, A. (2023). Degeneracies and symmetry breaking in
               pseudo-Hermitian matrices.  Physical Review Research,   Pathak, A. (2013). Non-Hermitian Quantum Gates are more
               5(2):023035.                                       Common than Hermitian Quantum Gates. [Preprint arXiv].
               https://doi.org/10.1103/PhysRevResearch.5.023035     https://doi.org/10.48550/arXiv.1309.4037
            Mittelstadt, B., Benzler, J., Engelmann, L., Prainsack, B., &   Pati, A.K. (2009). Entanglement in non-Hermitian quantum
               Vayena, E. (2018). Is there a duty to participate in digital   theory. Pramana - Journal of Physics, 73(3):485-498.
               epidemiology? Life Sciences, Society and Policy, 14:9.     https://doi.org/10.1007/s12043-009-0101-0
               https://doi.org/10.1186/s40504-018-0074-1       Pérez-García, D., Verstraete, F., Wolf, M.M., & Cirac, J.I. (2008).
            Monroe, C., Raussendorf, R., Ruthven, A., Brown, K.R.,   PEPS as Unique ground states of local Hamiltonians.
               Maunz, P., Duan, L.M., et al. (2014). Large-scale modular   Quantum Information and Computation, 8(6):650-663.
               quantum-computer architecture with atomic memory and      https://doi/10.5555/2016976.2016982
               photonic interconnects. Physical Review A, 89(2):022317.
                                                               Pomorski, K. (2020). Equivalence between Classical Epidemic
               https://doi.org/10.1103/PhysRevA.89.022317         Model and Non-dissipative and Dissipative Quantum Tight-
            Montangero, S. (2018). Introduction to Tensor Network Methods.   binding Model. [Preprint arXiv].
               Numerical Simulations of Low-dimensional Many-body      https://doi.org/10.48550/arXiv.2012.09923
               Quantum Systems. Cham, Switzerland: Springer.
                                                               Rahimi, I., Chen, F., & Gandomi, A.H. (2021). A  review on
               https://doi.org/10.1007/978-3-030-01409-4          COVID-19  forecasting models.  Neural Computing and
            Naghiloo, M., Abbasi, M., Joglekar, Y.N., & Murch, K.W. (2019).   Applications, 35:23671-23681.
               Quantum state tomography across the exceptional point in a      https://doi.org/10.1007/s00521-020-05626-8
               single dissipative qubit. Nature Physics, 15:1232-1236.
                                                               Rasmussen, S.E., & Zinner, N.T. (2020). Simple implementation
               https://doi.org/10.1038/s41567-019-0652-z          of high fidelity controlled-iSWAP gates and quantum circuit
            Nakahara, M., & Ohmi, T. (2008). Quantum Computing: From   exponentiation  of  non-Hermitian gates.  Physical Review
               Linear Algebra to Physical Realizations. Boca Raton, FL,   Research, 2(3):033097.
               USA: CRC Press, Taylor & Francis Group. Available from:      https://doi.org/10.1103/PhysRevResearch.2.033097
               https://www.routledge.com/quantum-computing-from-
               linear-algebra-to-physical-realizations/nakahara-ohmi/p/  Rath, B. (2020). Generating (2x2) PT-symmetric matrices using
               book/9780750309837 [Last accessed on 2023 May 10].  Pauli matrices as parity operator: broken spectra and stop
                                                                  light in unbroken spectra at unequal points.  European
            National Academies of Sciences, Engineering, and Medicine.   Journal of Mathematics and Computer Science, 7(1): 1-9.
               (2019). Quantum Computing: Progress and Prospects.
               Washington, DC, USA: The National Academies Press.   Rieffel, E., & Polak, W. (2014). Quantum Computing: A Gentle
               Available  from:  https://nap.nationalacademies.org/  Introduction. Cambridge, MA, USA: The MIT Press.
               catalog/25196/quantum-computing-progress-and-      Available from: https://mitpress.mit.edu/books/quantum-
               prospects [Last accessed on 2023 Sep 10].          computing [Last accessed on 2023 Feb 17].
                                                               Rischke, E. (2021). Symmetries in Quantum  Mechanics and
               https://doi.org/10.17226/25196
                                                                  Particle Physics. Frankfurt Digital Summer School. Available
            Ng, Y.J., & Van Dam, H. (2009). Projective geometry and   from:  https://itp.uni-frankfurt.de/~drischke/script_
               PT-symmetric Dirac Hamiltonian.  Physics Letters B,   symmetries_gu2021.pdf [Last accessed on 2023 Feb 05].
               673(3):237-239.
                                                               Robson, B. (2007). The new physician as unwitting quantum
               https://doi.org/10.1016/j.physletb.2009.02.034     Mechanic:  Is adapting Dirac’s inference system best practice
                                                                  for personalized medicine, genomics, and proteomics?
            Orús, R. (2014). A  practical introduction to tensor networks:
               Matrix product states and projected entangled pair states.   Journal of Proteome Research, 6(8):3114-3126.
               Annals of Physics, 349:117-158.                    https://doi.org/10.1021/pr070098h
               https://doi.org/10.1016/j.aop.2014.06.013       Robson, B., & Caruso, T.P. (2013). A Universal Exchange Language

            Volume 2 Issue 1 (2024)                         32                       https://doi.org/10.36922/ghes.2148
   78   79   80   81   82   83   84   85   86   87   88