Page 84 - GHES-2-1
P. 84

Global Health Econ Sustain                                          Quantum Data Lake for epidemic analysis



               for Healthcare. In: Lehmann, C.U., Ammenwerth,  E.,   reference to the Quantum Universal Exchange Language
               Nøhr  C., (Eds.), Proceedings of the 14   World Congress   (Q-UEL). Computers in Biology and Medicine, 143:105323.
                                             th
               on Medical and Health Informatics (MEDINFO). Vol. 192.      https://doi.org/10.1016/j.compbiomed.2022.105323
               Copenhagen, Denmark: IMIA and IOS Press. p.949.
                                                               Robson, B., & Baek, O.K. (2023). An ontology for very large
               https://doi.org/10.3233/978-1-61499-289-9-949
                                                                  numbers of longitudinal health records to facilitate data
            Robson, B., Caruso, T.P., & Balis, U.G.J. (2013). Suggestions for   mining and machine learning.  Informatics in Medicine
               a web based universal exchange and inference language   Unlocked, 38:101204.
               for medicine.  Computers in Biology and Medicine,      https://doi.org/10.1016/j.imu.2023.101204
               43(12):2297-2310.
                                                               Ruhamyankaka, E., Brunk, B.P., Dorsey, G., Harb, O.S., Helb, D.A.,
               https://doi.org/10.1016/j.compbiomed.2013.09.010   John Judkins, J., et al. (2020). ClinEpiDB: An open-access
            Robson, B. (2014). Hyperbolic Dirac Nets for medical decision   clinical epidemiology database resource encouraging online
               support. Theory, methods, and comparison with Bayes Nets.   exploration of complex studies. Gates Open Research, 3:1661.
               Computers in Biology and Medicine, 51:183-197.     https://doi.org/10.12688/gatesopenres.13087.2
               https://doi.org/10.1016/j.compbiomed.2014.03.014  Salathé, M., Bengtsson, L., Bodnar, T.J., Brewer, D.D.,

            Robson, B., & Boray, S. (2015). Implementation of a web based   Brownstein,   J.S., Buckee, C.,  et al. (2012). Digital
               universal exchange and inference language for medicine:   epidemiology. PLoS Computational Biology, 8(7):e1002616.
               Sparse data, probabilities and inference in data mining      https://doi.org/10.1371/journal.pcbi.1002616
               of clinical data repositories.  Computers in Biology and
               Medicine, 66:82-102.                            Salathé, M. (2018). Digital epidemiology: What is it, and where is
                                                                  it going? Life Sciences, Society and Policy, 14(1):1.
               https://doi.org/10.1016/j.compbiomed.2015.07.015
                                                                  https://doi.org/10.1186/s40504-017-0065-7
            Robson, B., Caruso, T.P., & Balis, U.G. (2015). Suggestions for
               a web based universal exchange and inference language   Salathé, M. (2021). Digital epidemiological surveillance. Journal
               for medicine. Continuity of patient care with PCAST   of Economics and Economic Education Research, 22(S4):1-2.
               disaggregation.  Computers in Biology and Medicine,   Samerski, S. (2018). Individuals on alert: Digital epidemiology
               56:51-66.                                          and the individualization of surveillance.  Life Sciences,
               https://doi.org/10.1016/j.compbiomed.2014.10.022   Society and Policy, 14:13.
            Robson, B. (2016). Studies in using a universal exchange and      https://doi.org/10.1186/s40504-018-0076-z
               inference language for evidence based medicine. Semi-  Savary, L., & Balents, L. (2017). Quantum spin liquids: A review.
               automated learning and reasoning for PICO methodology,   Reports on Progress in Physics, 80 (1):016502.
               systematic review, and environmental epidemiology.
               Computers in Biology and Medicine, 79:299-323.     https://doi.org/10.1088/0034-4885/80/1/016502
               https://doi.org/10.1016/j.compbiomed.2016.10.009  Samrin, S.S., Patil, R., Itagi, S., Chetti, S.C., & Tasneem, A. (2022).
                                                                  Design of logic gates using reversible gates with reduced
            Robson, B., & Boray, S. (2018). Studies in the extensively automatic   quantum cost. Global Transitions Proceedings, 3(1):136-141.
               construction of large odds-based inference networks from
               structured data. Examples from medical, bioinformatics,      https://doi.org/10.1016/j.gltp.2022.04.011
               and health insurance claims data. Computers in Biology and   Schmarzo, B. (2022a). CDO Challenge: Providing Clear “Line of
               Medicine, 95:147-166.                              Sight” from Data to Value. Data Science Central. Available
                                                                  from: https://www.datasciencecentral.com/cdo-challenge-
               https://doi.org/10.1016/j.compbiomed.2018.02.013
                                                                  providing-clear-line-of-sight-from-data-to-value  [Last
            Robson, B. (2020). Extension of the quantum universal exchange   accessed on 2023 Feb 05].
               language to precision medicine and drug lead discovery.
               Preliminary example studies using the mitochondrial   Schmarzo, B. (2022b). Data Management Value Realization
               genome. Computers in Biology and Medicine, 117:103621.  Journey Map. Data Science Central. Available from: https://
                                                                  www.datasciencecentral.com/data-management-value-
               https://doi.org/10.1016/j.compbiomed.2020.103621   realization-journey-map [Last accessed on 2023 Feb 05].
            Robson, B. (2022). Towards faster response against emerging   Schmitt, I. (2008). QQL: A DB&IR query language. The VLDB
               epidemics and prediction of variants of concern. Informatics   Journal, 17:39-56.
               in Medicine Unlocked, 31:100966.
                                                                  https://doi.org/10.1007/s00778-007-0070-1
               https://doi.org/10.1016/j.imu.2022.100966
                                                               Shakeel, S.M., Kumar, N.S., Madalli, P.P., Srinivasaiah, R.,
            Robson, B., & St. Clair, J. (2022). Principles of quantum mechanics   & Swamy, D.R. (2021). COVID-19 prediction models:
               for artificial intelligence in medicine. Discussion with   A  systematic literature review.  Osong Public Health and


            Volume 2 Issue 1 (2024)                         33                       https://doi.org/10.36922/ghes.2148
   79   80   81   82   83   84   85   86   87   88   89