Page 80 - GHES-2-1
P. 80

Global Health Econ Sustain                                          Quantum Data Lake for epidemic analysis



            Bender, C.M. (2016). PT symmetry in quantum physics: From a   Lecture  Notes  Physics.  Edmonton,  Alberta,  Canada:
               mathematical curiosity to optical experiments. Europhysics   University of Alberta: Available from: https://sites.ualberta.
               News, 47(2):17-20.                                 ca/~vbouchar/MAPH464/front.html [Last accessed on
                                                                  2023 Mar 01].
               https://doi.org/10.1051/epn/2016201
                                                               Bouwmeester, D., Pan, J.W., Mattle, K., Eibl, M., Weinfurter, H., &
            Bender, C.M., Hassanpour, N., Hook, D.W., Klevansky,  S.P.,
               Sünderhauf, C., & Wen, Z. (2017). Behavior of eigenvalues   Zeilinger, A. (1997). Experimental quantum teleportation.
               in a region of broken PT symmetry.  Physical Review A,   Nature, 390:575-579.
               95(5):052113.                                      https://doi.org/10.1038/37539
               https://doi.org/10.1103/PhysRevA.95.052113      Brennen, G., Giacobino, E., & Simon, C. (2015). Focus on
                                                                  quantum memory. New Journal of Physics, 17:050201.
            Bender, C.M., Hassanpour, N., Klevansky, S.P., & Sarkar S. (2018).
               PT-symmetric quantum field theory in D dimensions.      https://doi.org/10.1088/1367-2630/17/5/050201
               Physical Review D, 98(12):125003.
                                                               Cao, L., & Qing Liu, Q. (2021). COVID-19 Modeling: A Review.
               https://doi.org/10.1103/PhysRevD.98.125003         [Preprint arXiv].
            Bender, C.M. (2020). PT-symmetric quantum field theory.      https://doi.org/10.48550/arXiv.2104.12556
               Journal of Physics: Conference Series, 1586:012004.
                                                               Cervellin, G., Comelli, I., & Lippi, G. (2017). Is Google Trends a
               https://doi.org/10.1088/1742-6596/1586/1/012004    reliable tool for digital epidemiology? Insights from different
                                                                  clinical settings. Journal of Epidemiology and Global Health,
            Bender, C.M., Felski, A., Klevansky, S.P., & Sarkar S. (2021). PT
               symmetry and renormalisation in quantum field theory.   7(3):185-189.
               Journal of Physics: Conference Series, 2038:012004.     https://doi.org/10.1016/j.jegh.2017.06.001
               https://doi.org/10.1088/1742-6596/2038/1/012004  Chen, S.L., Chen, G.Y., & Chen, Y.N. (2014). Increase of
                                                                  entanglement by local PT-symmetric operations.  Physical
            Beneduci, R., Bilotta, E., & Pantano, P. (2021). A  unifying
               nonlinear probabilistic epidemic model in space and time.   Review A, 90(5):054301.
               Scientific Reports, 11:13860.                      https://doi.org/10.1103/PhysRevA.90.054301
               https://doi.org/10.1038/s41598-021-93388-1      Chino, N. (2020). Hermitian symmetry on a Hilbert space -its
                                                                  applications to some asymmetric phenomena.  Natural
            Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., &
               Wootters, W.K. (1993). Teleporting an unknown quantum   Science, 12:221-236.
               state  via  dual  classical  and  Einstein-Podolsky-Rosen      https://doi.org/10.4236/ns.2020.125020
               channels. Physical Review Letters, 70(13):1895.
                                                               Cho, Y.W., Campbell, G.T., Everett, J.L., Bernu, J.,
               https://doi.org/10.1103/PhysRevLett.70.1895        Higginbottom, D.B., Cao, M.T., et al. (2016). Highly efficient
                                                                  optical quantum memory with long coherence time in cold
            Beygi, A., Klevansky, S.P., & Bender, C.M. (2019). Relativistic
               PT-symmetric fermionic theories in 1+1 and 3+1     atoms. Optica, 3(1):100-107.
               dimensions. Physical Review A, 99(6):062117.       https://doi.org/10.1364/OPTICA.3.000100
               https://doi.org/10.1103/PhysRevA.99.062117      Choi, Y., Hahn, C., Yoon, J.W., & Song, S.H. (2018). Observation
                                                                  of an anti-PT-symmetric exceptional point and energy-
            Bian, J., Lu, P., Liu, T., Wu, H., Rao, X., Wang, K., et al. (2022).
               Quantum simulation of a general anti-PT-symmetric   difference conserving dynamics in electrical circuit
               Hamiltonian  with  a  trapped  ion qubit.  Fundamental   resonators. Nature Communications, 9:2182.
               Research, 3:904-908.                               https://doi.org/10.1038/s41467-018-04690-y
               https://doi.org/10.1016/j.fmre.2022.05.019      Cirac, J.I., Pérez-García, D., Schuch, N., & Verstraete, F. (2017).
                                                                  Matrix product unitaries: Structure, symmetries, and
            Boone, K., Bourgoin, J.P., Meyer-Scott, E., Heshami, K.,
               Jennewein, T., & Simon, C. (2015). Entanglement over   topological invariants.  Journal of Statistical Mechanics:
               global distances via quantum repeaters with satellite links.   Theory and Experiment, 2017:083105.
               Physical Review A, 91(5):052325.                   https://doi.org/10.1088/1742-5468/aa7e55
               https://doi.org/10.1103/PhysRevA.91.052325      Cirac, J.I., Pérez-García, D., Schuch, N., & Verstraete, F. (2021).
                                                                  Matrix product states and projected entangled pair states:
            Boray, S., & Robson, B. (2017). Methods and Systems of a
               Hyperbolc-Dirac-Net-based  Bioingine  Platform  and   Concepts, symmetries, theorems.  Reviews of Modern
               Ensemble of Applications. United States Patent Application   Physics, 93(4):045003.
               Publication, Pub. No.: US 2017/0185729 A1.         https://doi.org/10.1103/RevModPhys.93.045003
            Bouchard, V. (2020). MA PH 464  -  Group  Theory in Physics:   Cockshott, P. (1997). Quantum Relational Databases. [Preprint].


            Volume 2 Issue 1 (2024)                         29                       https://doi.org/10.36922/ghes.2148
   75   76   77   78   79   80   81   82   83   84   85