Page 43 - GHES-3-2
P. 43

Global Health Economics and
            Sustainability
                                                                                Random price generators in health policy


            Hatchuel, A., Weil, B., & Le Masson, P. (2012). Towards an   Sina Shih, Y.C., & Tai-Seale, M. (2012). Physicians ‘perceptions
               ontology of design: Lessons from C-K design theory and   of demand-induced supply in the information age: A latent
               forcing. Research in Engineering Design, 24(2):147-163.  class model. Health Economics, 21(3):252-269.
            Hauber, A.B., González, J.M., Groothuis-Oudshoorn, C.G.,      https://doi.org/10.1002/hec.1710
               Prior,  T., Marshall, D.A., Cunningham, C.,  et al. (2016).
               Statistical methods for the analysis of discrete choice   Soekhai, V., De Bekker-Grob, E., Ellis, A., & Vass, C.M. (2019).
               experiments. A report of the ISPOR conjoint analysis good   Discrete choice experiments in health economics: Past,
               research practices task force. Value in Health, 19:300-315.  present and future. Pharmacoeconomics, 37(2):201-226.
               https://doi.org/10.1016/j.jval.2016.04.004         https://doi.org/10.1007/s40273-018-0734-2
            Hausman, J., & McFadden, D. (1984). Specification tests for the   Solow, B., & Pezalla, E. (2018). ISPOR’s initiative on US value
               multinomial logit model. Econometrica, 52(5):1219-1240.
                                                                  assessment frameworks: The use of cost effectiveness
            Huttin, C.C. (2012). Mobile economics and pricing of healthcare   research in decision making among US insurers. Value in
               services. Technology and Health Care, 20:459-461.  Health, 21:166-168.
               https://doi.org/10.3233/THC-2012-0693              https://doi.org/10.1016/j.jval.2017.12.004
            Huttin, C.C. (2015). Perspectives of biologists, epidemiologists
               and geneticists’ controversies in science and health system   Sunstein, C.R. (2016). The Ethics of Influence: Government in
               reforms. Technology and Health Care, 23(1):103-108.  the Age of Behavioral Science. Cambridge: Cambridge
                                                                  University Press.
            Huttin, C.C. (2017). Stated and revealed preference issues-
               products, patients and physicians’ attributes in choice   Sunstein, C.R. (2019). How Change Happens. United States: MIT
               experiments. Technology and Health Care, 25(5):1005-1020.  Press.
            Huttin, C.C., & Hausman, J. (2021). Development of a physicians   United Nation. (2003). Integrated Environmental and Economic
               ‘choice  model  using  mixed  logit  with  random prices  for   Accounting, internal Documents on Pricing Taxonomies.
               drugs case study on diabetes TYPE II.  Archives  of  Health   UN: United States.
               Sciences, 5(1):1-10.
                                                               Vass, C., Boeri, M., Karim, S., Marshall, D., Craig, B., Ho, K., et al.
               https://doi.org/10.21203/rs.3.rs-124401/v1
                                                                  (2022). Accounting for Preference heterogeneity in discrete-
            Kurzweil, R. (2005). The Singularity is Near. When Humans   choice experiments: A ispor special interest group report.
               Transcend Biology. New York: Penguin Books.        Value in Health, 25(5):685-694.
            Mariel, P., & Meyerhoff, J. (2018). A more flexible model or simply      https://doi.org/10.1016/j.jval.2022.01.012
               more effort? On the use of correlated Random Parameters in
               applied choice studies. Ecological Economics, 154:419-429.  Zhou, M., & Bridges, J.F. (2019). Explore preference heterogeneity
            Park, S., & Gupta, S. (2012). Comparison of SML and GMM   for treatment among people with Type  2 diabetes:
               estimators  for  the  Random  coefficient  logit  model  using   A  comparison of random-parameters and latent class
               aggregate data. Empirical Economics, 43:1353-1372.  estimation techniques. Journal of Choice Modelling, 30:38-49.
               https://doi.org/10.1007/s00181-011-0519-3          https://doi.org/10.1016/j.jocm.2018.11.002

























            Volume 3 Issue 2 (2025)                         35                       https://doi.org/10.36922/ghes.3579
   38   39   40   41   42   43   44   45   46   47   48