Page 72 - GPD-2-1
P. 72
Gene & Protein in Disease Pyroptosis-related LncRNAs in pediatric AML
https://doi.org/10.1016/j.ccell.2017.05.010 via Wnt/β-catenin signaling pathway (in eng). Cancer Cell
Int, 19: 345.
29. Vago L, Gojo I, 2020, Immune escape and immunotherapy
of acute myeloid leukemia (in eng). J Clin Invest, 130(4): https://doi.org/10.1186/s12935-019-1057-x
1552–1564.
39. Li S, Wu D, Jia H, et al., 2020, Long non-coding RNA
https://doi.org/10.1172/jci129204 LRRC75A-AS1 facilitates triple negative breast cancer cell
30. Jiang F, Wang XY, WangMY, et al., 2021, An immune proliferation and invasion via functioning as a ceRNA to
checkpoint-related gene signature for predicting survival modulate BAALC (in eng). Cell Death Dis, 11(8): 643.
of pediatric acute myeloid leukemia (in eng). J Oncol, https://doi.org/10.1038/s41419-020-02821-2
2021: 5550116.
40. Wu L, Liao W, Wang X, et al., 2021, Expression, prognosis
https://doi.org/10.1155/2021/55501106 value, and immune infiltration of lncRNA ASB16-AS1
31. He R, Wu S, Gao R, et al., 2021, Identification of a long identified by pan-cancer analysis (in eng). Bioengineered,
noncoding RNA TRAF3IP2-AS1 as key regulator of 12(2): 10302–10318.
IL-17 signaling through the SRSF10-IRF1-Act1 axis https://doi.org/10.1080/21655979.2021.1996054
in autoimmune diseases (in eng). J Immunol, 206(10):
2353–2365. 41. Bosman MC, Schepers H, Jaques J, et al., 2014, The TAK1-
NF-κB axis as a therapeutic target for AML (in eng). Blood,
https://doi.org/10.4049/jimmunol.2001223 124(20): 3130–3140.
32. Han Y, Ye A, Bi L, et al., 2014, Th17 cells and interleukin-17 https://doi.org/10.1182/blood-2014-04-569780
increase with poor prognosis in patients with acute myeloid
leukemia (in eng). Cancer Sci, 105(8): 933–942. 42. Fu T, Ji K, Jin L, et al., 2021, ASB16-AS1 up-regulated and
phosphorylated TRIM37 to activate NF-κB pathway and
https://doi.org/10.1111/cas.12459
promote proliferation, stemness, and cisplatin resistance of
33. Wróbel T, Mazur G, Jazwiec B, et al., 2003, Interleukin-17 gastric cancer (in eng). Gastric Cancer, 24(1): 45–59.
in acute myeloid leukemia (in eng). J Cell Mol Med, 7(4):
472–474. https://doi.org/10.1007/s10120-020-01096-y
43. Zhou JG, Liang B, Liu JG, et al., 2021, Identification of
https://doi.org/10.1111/j.1582-4934.2003.tb00250.x
15 lncRNAs signature for predicting survival benefit of
34. Li J, Zhang J, Tao S, et al., 2022, Prognostication of pancreatic advanced melanoma patients treated with Anti-PD-1
cancer using the cancer genome atlas based ferroptosis- monotherapy (in eng). Cells, 10(5): 977.
related long non-coding RNAs (in eng). Front Genet,
13: 838021. https://doi.org/10.3390/cells10050977
https://doi.org/10.3389/fgene.2022.838021 44. Rezaei M, Tan J, Zeng C, et al., 2021, TIM-3 in leukemia;
Immune response and beyond (in eng). Front Oncol,
35. Zhong F, Yao F, Cheng Y, et al., 2022, m6A-related lncRNAs 11: 753677.
predict prognosis and indicate immune microenvironment
in acute myeloid leukemia (in eng). Sci Rep, 12(1): 1759. https://doi.org/10.3389/fonc.2021.753677
https://doi.org/10.1038/s41598-022-05797-5 45. Kikushige Y, Akashi K, 2012, TIM-3 as a therapeutic target
for malignant stem cells in acute myelogenous leukemia (in
36. Ni W, Mo H, Liu Y, et al., 2021, Targeting cholesterol eng). Ann N Y Acad Sci, 1266: 118–123.
biosynthesis promotes anti-tumor immunity by inhibiting
long noncoding RNA SNHG29-mediated YAP activation https://doi.org/10.1111/j.1749-6632.2012.06550.x
(in eng). Mol Ther, 29(10): 2995–3010. 46. Du T, Gao J, Li P, et al., 2021, Pyroptosis, metabolism, and
https://doi.org/10.1016/j.ymthe.2021.05.012 tumor immune microenvironment (in eng) Clin Transl Med,
11(8): e492.
37. Chen C, Liang C, Wang S, et al., 2020, Expression patterns
of immune checkpoints in acute myeloid leukemia (in eng). https://doi.org/10.1002/ctm2.492
J Hematol Oncol, 13(1): 28. 47. Park EG, Pyo SJ, Cui Y, et al., 2022, Tumor immune
https://doi.org/10.1186/s13045-020-00853-x microenvironment lncRNAs (in eng). Brief Bioinform,
23(1): bbab504.
38. Han L, Li Z, Jiang Y, et al., 2019, SNHG29 regulates miR-
223-3p/CTNND1 axis to promote glioblastoma progression https://doi.org/10.1093/bib/bbab504
Volume 2 Issue 1 (2023) 17 https://doi.org/10.36922/gpd.v2i1.230

