Page 81 - GPD-2-3
P. 81
Gene & Protein in Disease Hotspots in the FOXO4: p53 interaction
crossroads of molecular carcinogenesis, molecular of combined use of Oxyma and HATU in aggregating
epidemiology, and cancer risk assessment. Environ Health peptide sequences. J Pept Sci, 23(4): 272–281.
Perspect, 104 Suppl 3(Suppl 3): 435–439.
https://doi.org/10.1002/psc.2977
https://doi.org/10.1289/ehp.96104s3435
20. Caporale A, Doti N, Monti A, et al., 2018, Automatic
11. Baar MP, Brandt RM, Putavet DA, et al., 2017, Targeted procedures for the synthesis of difficult peptides using
apoptosis of senescent cells restores tissue homeostasis in oxyma as activating reagent: A comparative study on the
response to chemotoxicity and aging. Cell, 169(1): 132–147.e16. use of bases and on different deprotection and agitation
https://doi.org/10.1016/j.cell.2017.02.031 conditions. Peptides, 102: 38–46.
12. Bourgeois B, Madl T, 2018, Regulation of cellular senescence https://doi.org/10.1016/j.peptides.2018.02.006
via the FOXO4-p53 axis. FEBS Lett, 592(12): 2083–2097. 21. Nanotempertech, 2021, Protein Labeling-improved
https://doi.org/10.1002/1873-3468.13057 Quantitation of Biomolecular Interactions by MST Using the
His-tag Labeling Kit RED-tris-NTA 2 Generation. Available
nd
13. Rodier F, Muñoz DP, Teachenor R, et al., 2011, DNA-SCARS: from: https://resources.nanotempertech.com/technical-notes
Distinct nuclear structures that sustain damage-induced [Last accessed on 2023 Jun 20].
senescence growth arrest and inflammatory cytokine
secretion. J Cell Sci, 124(Pt 1): 68–81. 22. Van Zundert GC, Rodrigues JP, Trellet M, et al., 2016,
The HADDOCK2.2 web server: User-friendly integrative
https://doi.org/10.1242/jcs.071340
modeling of biomolecular complexes. J Mol Biol, 428:
14. Wang L, Wang N, Zhang W, et al., 2022, Therapeutic 720–725.
peptides: Current applications and future directions. Signal
Transduct Target Ther, 7(1): 48. https://doi.org/10.1016/j.jmb.2015.09.014
23. Petty TJ, Emamzadah S, Costantino L, et al., 2011, An
https://doi.org/10.1038/s41392-022-00904-4
induced fit mechanism regulates p53 DNA binding kinetics
15. Mandal R, Kohoutova K, Petrvalska O, et al., 2022, FOXO4 to confer sequence specificity. EMBO J, 30(11): 2167–2176.
interacts with p53 TAD and CRD and inhibits its binding to
DNA. Protein Sci, 31(5): e4287. https://doi.org/10.1038/emboj.2011.127
https://doi.org/10.1002/pro.4287 24. Boura E, Rezabkova L, Brynda J, et al., 2010, Structure of
the human FOXO4-DBD-DNA complex at 1.9 Å resolution
16. Le HH, Cinaroglu SS, Manalo EC, et al., 2021, Molecular reveals new details of FOXO binding to the DNA. Acta
modelling of the FOXO4-TP53 interaction to design Crystallogr D Biol Crystallogr, 66(Pt 12): 1351–1357.
senolytic peptides for the elimination of senescent cancer
cells. EBioMedicine, 73: 103646. https://doi.org/10.1107/S0907444910042228
https://doi.org/10.1016/j.ebiom.2021.103646 25. Kuriata A, Gierut AM, Oleniecki T, et al., 2018, CABS-flex
2.0: A web server for fast simulations of flexibility of protein
17. Kim J, Ahn D, Park CJ, 2022, Biophysical investigation of structures. Nucleic Acids Res, 46(W1): W338–W343.
the dual binding surfaces of human transcription factors
FOXO4 and p53. FEBS J, 289(11): 3163–3182. https://doi.org/10.1093/nar/gky356
https://doi.org/10.1111/febs.16333 26. Pettersen EF, Goddard TD, Huang CC, et al., 2021,
UCSF ChimeraX: Structure visualization for researchers,
18. Dümmler A, Lawrence AM, de Marco A, 2005, Simplified educators, and developers. Protein Sci, 30(1): 70–82.
screening for the detection of soluble fusion constructs
expressed in E. coli using a modular set of vectors. Microb https://doi.org/10.1002/pro.3943
Cell Fact, 4: 34.
27. Sela M, Zisman E, 1997, Different roles of D-amino acids in
https://doi.org/10.1186/1475-2859-4-34 immune phenomena. FASEB J, 11(6): 449–456.
19. Caporale A, Doti N, Sandomenico A, et al., 2017, Evaluation https://doi.org/10.1096/fasebj.11.6.9194525
Volume 2 Issue 3 (2023) 8 https://doi.org/10.36922/gpd.1491

