Page 20 - GPD-2-4
P. 20

Gene & Protein in Disease                                              Stem cell-based antimicrobial therapy



               https://doi.org/10.3892/ijo.2021.5255              models of sepsis and sepsis-induced kidney injury.  J  Clin
                                                                  Investig, 119(10): 2868–2878.
            38.  Chow L, Johnson V, Impastato R, et al., 2020, Antibacterial
               activity of human mesenchymal stem cells mediated directly      https://doi.org/10.1172/JCI39421
               by constitutively secreted factors and indirectly by activation   49.  Krasnodembskaya A, Song Y, Fang X,  et al., 2010,
               of innate immune effector cells.  Stem Cells Transl Med,   Antibacterial effect of human mesenchymal stem cells is
               9(2): 235–249.
                                                                  mediated in part from secretion of the antimicrobial peptide
               https://doi.org/10.1002/sctm.19-0092               LL-37. Stem Cells, 28(12): 2229–2238.
            39.  Cheng H, Zhang F, Ding Y, 2021, CRISPR/Cas9 delivery      https://doi.org/10.1002/stem.544
               system  engineering for  genome editing in  therapeutic   50.  Ding J, Maxwell A, Adzibolosu N, et al., 2022, Mechanisms
               applications. Pharmaceutics, 13(10): 1649.
                                                                  of immune regulation by the placenta: Role of type  I
               https://doi.org/10.3390/pharmaceutics13101649      interferon and interferon‐stimulated genes signaling during
                                                                  pregnancy. Immunol Rev, 308(1): 9–24.
            40.  Weis BL, Schleiff E, Zerges W., 2013, Protein targeting to
               subcellular organelles via MRNA localization.  Biochim      https://doi.org/10.1111/imr.13077
               Biophys Acta, 1833(2): 260–273.
                                                               51.  Yao X, Wei W, Wang X,  et  al., 2019, Stem cell derived
               https://doi.org/10.1016/j.bbamcr.2012.04.004       exosomes:  MicroRNA   therapy  for  age-related
                                                                  musculoskeletal disorders. Biomaterials, 224: 119492.
            41.  Tiwari V, 2019, Post-translational modification of ESKAPE
               pathogens as a potential target in drug discovery.  Drug      https://doi.org/10.1016/j.biomaterials.2019.119492
               Discov Today, 24(3): 814–822.
                                                               52.  Kurtz A., 2008, Mesenchymal stem cell delivery routes and
               https://doi.org/10.1016/j.drudis.2018.12.005       fate. Int J Stem Cells, 1(1): 1–7.
            42.  Verkhratsky A, Matteoli M, Parpura V,  et al., 2016,      https://doi.org/10.15283/ijsc.2008.1.1.1
               Astrocytes as secretory cells of the central nervous system:   53.  Herrmann IK, Wood MJ, Fuhrmann G, 2021, Extracellular
               İdiosyncrasies of vesicular secretion.  EMBO J, 35(3):   vesicles as a next-generation drug delivery platform.  Nat
               239–257.
                                                                  Nanotechnol, 16(7): 748–759.
               https://doi.org/10.15252/embj.201592705
                                                                  https://doi.org/10.1038/s41565-021-00931-2
            43.  Wang J, Dou X, Song J, et al., 2019., Antimicrobial peptides:   54.  Dunn CM, Kameishi S, Grainger DW, et a., 2021, Strategies
               Promising alternatives in the post feeding antibiotic era.   to address mesenchymal stem/stromal cell heterogeneity
               Med Res Rev, 39(3): 831–859.
                                                                  in immunomodulatory profiles to improve cell-based
               https://doi.org/10.1002/med.21542                  therapies. Acta Biomater, 133: 114–125.
            44.  Rai A, Ferrão R, Palma P, et al., 2022, Antimicrobial peptide-     https://doi.org/10.1016/j.actbio.2021.03.069
               based materials: Opportunities  and challenges.  J  Mater   55.  Zhang T, Lin R, Wu H, et al., 2022, Mesenchymal stem cells:
               Chem B, 10(14): 2384–2429.
                                                                  A living carrier for active tumor-targeted delivery. Adv Drug
               https://doi.org/10.1039/D1TB02617H                 Deliv Rev, 185: 114300.
            45.  Zi Y, Yang K, He J, et al., 2022, Strategies to enhance drug      https://doi.org/10.1016/j.addr.2022.114300
               delivery to solid tumors by harnessing the EPR effects and   56.  Teixeira MC, Carbone C, Sousa MC,  et al., 2020,
               alternative  targeting  mechanisms.  Adv Drug Deliv Rev,   Nanomedicines  for  the  delivery of antimicrobial peptides
               188: 114449.
                                                                  (AMPs). Nanomaterials (Basel), 10(3): 560.
               https://doi.org/10.1016/j.addr.2022.114449
                                                                  https://doi.org/10.3390/nano10030560
            46.  Zocchi ML, Vindigni V, Pagani A, et al., 2019, Regulatory,   57.  Gao  T,  Huang  F,  Wang  W,  et al.,  2022,  Interleukin-10
               ethical, and technical considerations on regenerative   genetically modified clinical-grade mesenchymal stromal
               technologies and adipose-derived mesenchymal stem cells.   cells  markedly  reinforced  functional  recovery  after
               Eur J Plastic Surg, 42: 531–548.
                                                                  spinal cord injury via directing alternative activation of
               https://doi.org/10.1007/s00238-019-01571-5         macrophages. Cell Mole Biol Lett, 27(1): 27.
            47.  Khan A, Mann L, Papanna R,  et al., 2017, Mesenchymal      https://doi.org/10.1186/s11658-022-00325-9
               stem cells internalize Mycobacterium tuberculosis through   58.  Chen CH, Bepler T, Pepper K,  et al., 2022, Synthetic
               scavenger receptors and restrict bacterial growth through   molecular evolution of antimicrobial peptides.  Curr  Opin
               autophagy. Sci Rep, 7(1): 15010.
                                                                  Biotechnol, 75: 102718.
               https://doi.org/10.1038/s41598-017-15290-z
                                                               59.  Zhang J, Zhang W, Sun T,  et al., 2022, The influence of
            48.  Doi K, Leelahavanichkul A, Yuen PS, et al., 2009, Animal   intervertebral  disc  microenvironment  on  the  biological


            Volume 2 Issue 4 (2023)                         12                       https://doi.org/10.36922/gpd.1230
   15   16   17   18   19   20   21   22   23   24   25