Page 21 - GPD-2-4
P. 21

Gene & Protein in Disease                                              Stem cell-based antimicrobial therapy



               behavior of engrafted mesenchymal stem cells. Stem Cells   69.  Kanie K, Sakai T, Imai Y, et al., 2019, Effect of mechanical
               Int, 2022: 8671482.                                vibration stress in cell culture on human induced pluripotent
                                                                  stem cells. Regen Ther, 12: 27–35.
               https://doi.org/10.1155/2022/8671482
                                                                  https://doi.org/10.1016/j.reth.2019.05.002
            60.  Cheng Y, Cao X, Qin L, 2020, Mesenchymal stem cell-
               derived extracellular vesicles: A novel cell-free therapy for   70.  Thirumala S, Goebel WS, Woods EJ, 2009, Clinical grade
               sepsis. Front Immunol, 11: 647.                    adult stem cell banking. Organogenesis, 5(3): 143–154.
               https://doi.org/10.3389/fimmu.2020.00647           https://doi.org/10.4161/org.5.3.9811
            61.  Guastaldi RB, Secoli SR, 2011, Drug interactions of   71.  Le Blanc K, Davies LC, 2015, Mesenchymal stromal cells and
               anti-microbial agents used in hematopoietic stem cell   the innate immune response. Immunol Lett, 168(2): 140–146.
               transplantation. Rev Lat Am Enfermagem, 19: 960–967.
                                                                  https://doi.org/10.1016/j.imlet.2015.05.004
               https://doi.org/10.1590/s0104-11692011000400015
                                                               72.  Zhao Y, Pu M, Zhang J, et al., 2021, Recent advancements
            62.  Lee AS, Tang C, Rao MS, et al., 2013, Tumorigenicity as a   of nanomaterial-based therapeutic strategies toward
               clinical hurdle for pluripotent stem cell therapies. Nat Med,   sepsis:  Bacterial eradication, anti-inflammation, and
               19(8): 998–1004.                                   immunomodulation. Nanoscale, 13(24): 10726–10747.
               https://doi.org/10.1038/nm.3267                    https://doi.org/10.1039/D1NR02706A
            63.  Lukomskyj AO, Rao N, Yan L, et al., 2022, Stem cell-based   73.  Qin H, Zhao A, 2020, Mesenchymal stem cell therapy for
               tissue  engineering  for  the  treatment  of  burn  wounds:   acute respiratory distress syndrome: From basic to clinics.
               A systematic review of preclinical studies. Stem Cell Rev Rep,   Protein Cell, 11(10): 707–722.
               18(6): 1926–1955.
                                                                  https://doi.org/10.1007/s13238-020-00738-2
               https://doi.org/10.1007/s12015-022-10341-z
                                                               74.  Lafaille FG, Harschnitz O, Lee YS,  et al., 2019., Human
            64.  Bolli R, Hare JM, March KL, et al., 2018, Rationale and design   SNORA31 variations impair  cortical  neuron-intrinsic
               of the CONCERT-HF trial (combination of mesenchymal   immunity to HSV-1 and underlie herpes simplex
               and c-kit+ cardiac stem cells as regenerative therapy for   encephalitis. Nat Med, 25(12): 1873–1884.
               heart failure). Circ Res, 122(12): 1703–1715.
                                                                  https://doi.org/10.1038/s41591-019-0672-3
               https://doi.org/10.1161/CIRCRESAHA.118.312978
                                                               75.  Shi C, Zhu Y, Ran X, et al., 2006, Therapeutic potential of
            65.  Hanson SE, Bentz ML, Hematti P, 2010, Mesenchymal   chitosan and its derivatives in regenerative medicine. J Surg
               stem cell therapy for nonhealing cutaneous wounds. Plast   Res, 133(2): 185–192.
               Reconstruct Surg, 125(2): 510–516.
                                                                  https://doi.org/10.1016/j.jss.2005.12.013
               https://doi.org/10.1097/PRS.0b013e3181c722bb
                                                               76.  Malandrakis AA, Kavroulakis N, Chrysikopoulos CV,
            66.  Mousaei Ghasroldasht M, Seok J, Park HS, et al., 2022, Stem   2022, Metal nanoparticles against fungicide resistance:
               cell therapy: From idea to clinical practice. Int J Mole Sci,   Alternatives or partners? Pest Manag Sci, 78(10): 3953–3956.
               23(5): 2850.
                                                                  https://doi.org/10.1002/ps.7014
               https://doi.org/10.3390/ijms23052850
                                                               77.  Melkoumian Z, Weber JL, Weber DM, et al., 2010, Synthetic
            67.  Harapanhalli RS, 2010, Food and drug administration   peptide-acrylate surfaces for long-term self-renewal and
               requirements for testing and approval of new       cardiomyocyte differentiation of human embryonic stem
               radiopharmaceuticals. Semin Nucl Med, 40(5): 364–384.  cells. Nat Biotechnol, 28(6): 606–610.
               https://doi.org/10.1053/j.semnuclmed.2010.05.002     https://doi.org/10.1038/nbt.1629
            68.  Zetterberg H, Bendlin BB, 2021, Biomarkers for Alzheimer’s   78.  Shepherd FR, McLaren JE, 2020, T cell immunity to bacterial
               disease-preparing  for a  new era  of disease-modifying   pathogens: Mechanisms of immune control and bacterial
               therapies. Mol Psychiatry, 26(1): 296–308.         evasion. Int J Mole Sci, 21(17): 6144.
               https://doi.org/10.1038/s41380-020-0721-9          https://doi.org/10.3390/ijms21176144













            Volume 2 Issue 4 (2023)                         13                       https://doi.org/10.36922/gpd.1230
   16   17   18   19   20   21   22   23   24   25   26