Page 53 - GPD-2-4
P. 53

Gene & Protein in Disease                                                    Cyanine and cancer therapy



            210.  Wezgowiec J, Kotulska M, Saczko J,  et  al., 2013,   220.  Zhang J, Liu Z, Lian P,  et  al., 2016, Selective imaging
                 Cyanines in photodynamic reaction assisted by      and cancer cell death via Ph switchable near-infrared
                 reversible electroporation--in vitro study on human   fluorescence and photothermal effects.  Chem Sci,
                 breast carcinoma cells.  Photodiagnosis Photodyn Ther,   7: 5995–6005.
                 10: 490–502.
                                                                    https://doi.org/10.1039/C6SC00221H
                 https://doi.org/10.1016/j.pdpdt.2013.04.004.
                                                               221.  Thomas RG, Jeong YY, 2017, NIRF heptamethine cyanine
            211.  Flaumenhaft R, Tanaka E, Graham GJ,  et al., 2007,   dye nanocomplexes for multi modal theranosis of tumors.
                 Localization and quantification of platelet-rich thrombi   Chonnam Med J, 53: 83–94.
                 in large blood vessels with near-infrared fluorescence      https://doi.org/10.4068/cmj.2017.53.2.83
                 imaging. Circulation, 115: 84–93.
                                                               222.  Yang X, Shi C, Tong R, et al., 2010, Near Ir Heptamethine
                 https://doi.org/10.1161/CIRCULATIONAHA.106.643908
                                                                    cyanine dye-mediated cancer imaging. Clin Cancer Res,
            212.  Cai Z, Yu J, Hu J, et al., 2023, Three near-Infrared and   16: 2833–2844.
                 lysosome-targeting probes for photodynamic therapy      https://doi.org/10.1158/1078-0432.CCR-10-0059
                 (Pdt).  Spectrochim Acta Part  A Mol Biomol Spectrosc,
                 286: 122027.                                  223.  Yuan J, Yi X, Yan F, et al., 2015, Near-infrared fluorescence
                                                                    imaging of prostate cancer using heptamethine
                 https://doi.org/10.1016/j.saa.2022.122027
                                                                    carbocyanine dyes. Mol Med Rep, 11: 821–828.
            213.  Kong C, Chen X, 2022, Combined photodynamic and      https://doi.org/10.3892/mmr.2014.2815
                 photothermal therapy and immunotherapy for cancer
                 treatment: A review. Int J Nanomed, 17: 6427–6446.  224.  Sun C, Wang J, Xia T, et al., 2022, Mitochondrion-targeted
                                                                    NIR therapeutic agent suppresses melanoma by inducing
                 https://doi.org/10.2147/IJN.S388996
                                                                    apoptosis and cell cycle arrest via E2f/Cyclin/Cdk
            214.  Li  P,  Liu  Y,  Liu  W,  et  al.,  2019,  Ir-783  inhibits  breast   pathway. Pharmaceuticals (Basel, Switzerland), 15: 1589.
                 cancer cell proliferation and migration by inducing      https://doi.org/10.3390/ph15121589
                 mitochondrial fission. Int J Oncol, 55: 415–424.
                                                               225.  Cai  H,  Wang  R,  Guo  X,  et  al.,  2021,  Combining
                 https://doi.org/10.3892/ijo.2019.4821
                                                                    gemcitabine-loaded  macrophage-like  nanoparticles
            215.  Tang Q, Liu W, Zhang Q, et al., 2018, Dynamin-related   and erlotinib for pancreatic cancer therapy. Mol Pharm,
                 protein 1-mediated mitochondrial fission contributes to   18: 2495–2506.
                 Ir-783-induced apoptosis in human breast cancer cells.      https://doi.org/10.1021/acs.molpharmaceut.0c01225
                 J Cell Mol Med, 22: 4474–4485.
                                                               226.  Zhan Y, Ma W, Zhang Y,  et al., 2019, DNA-based
                 https://doi.org/10.1111/jcmm.13749
                                                                    nanomedicine with targeting and enhancement of
            216.  Hou L, Yang X, Ren J, et al., 2016, A novel redox-sensitive   therapeutic efficacy of breast cancer cells. ACS Appl Mater
                 system based on single-walled carbon nanotubes for   Interfaces, 11: 15354–15365.
                 chemo-photothermal therapy and magnetic resonance      https://doi.org/10.1021/acsami.9b03449
                 imaging. Int J Nanomed, 11: 607–624.
                                                               227.  Hou YJ, Yang XX, Liu RQ,  et al., 2020, Pathological
                 https://doi.org/10.2147/IJN.S98476
                                                                    mechanism of photodynamic therapy and photothermal
            217.  Wu JB, Shi C, Chu GC,  et al., 2015, Near-infrared   therapy based on nanoparticles.  Int J Nanomed,
                 fluorescence heptamethine carbocyanine dyes mediate   15: 6827–6838.
                 imaging and targeted drug delivery for human brain      https://doi.org/10.2147/IJN.S269321
                 tumor. Biomaterials, 67: 1–10.
                                                               228.  Zhang Y, Lv T, Zhang H,  et al., 2017, Folate and
                 https://doi.org/10.1016/j.biomaterials.2015.07.028
                                                                    Heptamethine  cyanine  modified  chitosan-based
            218.  Shao  C,  Liao  CP,  Hu  P,  et al.,  2014,  Detection  of  live   nanotheranostics for tumor targeted near-infrared
                 circulating tumor cells by a class of near-infrared   fluorescence imaging and photodynamic therapy.
                 heptamethine carbocyanine dyes in patients with localized   Biomacromolecules, 18: 2146–2160.
                 and metastatic prostate cancer. PLoS One, 9: e88967.
                                                                    https://doi.org/10.1021/acs.biomac.7b00466
                 https://doi.org/10.1371/journal.pone.0088967
                                                               229.  Rizvi SF, Mu S, Zhao C, et al., 2022, Fabrication of self-
            219.  Cohen S, Margel S, 2012, Engineering of near Ir   assembled peptide nanoparticles for in vitro assessment
                 fluorescent albumin nanoparticles for in vivo detection of   of cell apoptosis pathway and in vivo therapeutic efficacy.
                 colon cancer. J Nanobiotechnol, 10: 36.            Mikrochim Acta, 189: 53.
                 https://doi.org/10.1186/1477-3155-10-36            https://doi.org/10.1007/s00604-021-05148-7



            Volume 2 Issue 4 (2023)                         22                       https://doi.org/10.36922/gpd.2486
   48   49   50   51   52   53   54   55   56   57   58