Page 31 - GPD-3-4
P. 31

Gene & Protein in Disease                                          GLUT5 in cancer development and therapy



            Availability of data                               11.  Wuest M, Hamann I, Bouvet V,  et  al. Molecular imaging
                                                                  of GLUT1 and GLUT5 in breast cancer: A  multitracer
            Not applicable.                                       positron emission tomography imaging study in mice. Mol
                                                                  Pharmacol. 2018;93:79-89.
            References
                                                                  doi: 10.1124/mol.117.110007
            1.   Song A, Mao Y, Wei H. GLUT5: Structure, functions,
               diseases  and  potential  applications.  Acta Biochim Biophys   12.  Su C, Li H, Gao W. GLUT5 increases fructose utilization and
               Sin (Shanghai). 2023;55:1519-1538.                 promotes tumor progression in glioma. Biochem Biophy Res
                                                                  Commun. 2018;500:462-469.
               doi: 10.3724/abbs.2023158
                                                                  doi: 10.1016/j.bbrc.2018.04.103
            2.   Shu R, David ES, Ferraris RP. Dietary fructose enhances
               intestinal fructose transport and GLUT5 expression in   13.  Carreño DV, Corro NB, Cerda-Infante NF,  et al. Dietary
               weaning rats.  Am J Physiol Gastrointest Liver Physiol.   fructose promotes prostate cancer growth.  Cancer Res.
               1997;272:G446-G453.                                2021;81:2824-2832.
               doi: 10.1152/ajpgi.1997.272.3.G446                 doi: 10.1158/0008-5472.CAN-19-0456
            3.   Patel C, Douard V, Yu S, Gao N, Ferraris RP. Transport,   14.  Suwannakul N, Armartmuntree N, Thanan R, et al. Targeting
               metabolism,  and  endosomal  trafficking-dependent  fructose metabolism by glucose transporter 5 regulation in
               regulation of  intestinal fructose  absorption.  FASEB J.   human cholangiocarcinoma. Genes Dis. 2022;9:1727-1741.
               2015;29:4046-4058.                                 doi: 10.1016/j.gendis.2021.09.002
               doi: 10.1096/fj.15-272195                       15.  Weng Y, Fan X, Bai Y, et al. SLC2A5 promotes lung
            4.   Hannou SA, Haslam DE, McKeown NM, Herman MA.     adenocarcinoma cell growth and metastasis by enhancing
               Fructose metabolism and metabolic disease. J Clin Invest.   fructose utilization. Cell Death Dis. 2018;4:38.
               2018;128:545-555.                                  doi: 10.1038/s41420-018-0038-5
               doi: 10.1172/jci96702                           16.  Chen WL, Jin X, Wang M, et al. GLUT5-mediated fructose
            5.   Herman MA, Birnbaum MJ. Molecular aspects of     utilization drives lung cancer growth by stimulating fatty
               fructose metabolism and metabolic disease.  Cell  Metab.   acid synthesis and AMPK/mTORC1 signaling. JCI Insight.
               2021;33:2329-2354.                                 2020;5:e131596.
               doi: 10.1016/j.cmet.2021.09.010                    doi: 10.1172/jci.insight.131596
            6.   Elsaid S, Wu X, Tee SS. Fructose vs. glucose: Modulating stem   17.  Icard  P,  Shulman  S,  Farhat  D,  Steyaert  JM,  Alifano  M,
               cell growth and function through sugar supplementation.   Lincet  H. How the Warburg effect supports aggressiveness
               FEBS Open Bio. 2024;14:1277-1290.                  and  drug resistance  of cancer  cells?  Drug Resist Updat.
                                                                  2018;38:1-11.
               doi: 10.1002/2211-5463.13846
                                                                  doi: 10.1016/j.drup.2018.03.001
            7.   Krause N, Wegner A. Fructose metabolism in cancer. Cells.
               2020;9:2635.                                    18.  Douard V, Ferraris RP. The role of fructose transporters
                                                                  in diseases linked to excessive fructose intake.  J  Physiol.
               doi: 10.3390/cells9122635
                                                                  2013;591:401-414.
            8.   Hadzi-Petrushev N, Stojchevski R, Jakimovska A,  et al.      doi: 10.1113/jphysiol.2011.215731
               GLUT5-overexpression-related tumorigenic implications.
               Mol Med. 2024;30:114.                           19.  Kannan S, Begoyan VV, Fedie JR, et al. Metabolism-driven
                                                                  high-throughput cancer identification with GLUT5-specific
               doi: 10.1186/s10020-024-00879-8
                                                                  molecular probes. Biosensors (Basel). 2018;8:39.
            9.   Shen Z, Li Z, Liu Y,  et al. GLUT5-KHK axis-mediated
               fructose metabolism drives proliferation and chemotherapy      doi: 10.3390/bios8020039
               resistance of colorectal cancer. Cancer Lett. 2022;534:215617.  20.  Szablewski L. Glucose transporters as markers of diagnosis
                                                                  and prognosis in cancer diseases. Oncol Rev. 2022;16:561.
               doi: 10.1016/j.canlet.2022.215617
                                                                  doi: 10.4081/oncol.2022.561
            10.  Włodarczyk J, Włodarczyk M, Zielińska M, Jędrzejczak B,
               Dziki L, Fichna J. Blockade of fructose transporter protein   21.  RanaN, Aziz MA, Serya RAT,  et al. A  fluorescence-based
               GLUT5 inhibits proliferation of colon cancer cells: Proof   assay to probe inhibitory effect of fructose mimics on
               of concept for a new class of anti-tumor therapeutics.   GLUT5 transport in breast cancer cells. ACS Bio Med Chem
               Pharmacol Rep. 2021;73:939-945.                    Au. 2023;3:51-61.
               doi: 10.1007/s43440-021-00281-9                    doi: 10.1021/acsbiomedchemau.2c00056


            Volume 3 Issue 4 (2024)                         10                              doi: 10.36922/gpd.4171
   26   27   28   29   30   31   32   33   34   35   36