Page 33 - GPD-3-4
P. 33

Gene & Protein in Disease                                          GLUT5 in cancer development and therapy



               doi: 10.1093/carcin/bgaa074                        progression. Sci Rep. 2017;7:9065.
            45.  Monzavi-Karbassi  B,  Hine  RJ, Stanley  JS,  et al.  Fructose      doi: 10.1038/s41598-017-08835-9
               as  a carbon source  induces  an aggressive phenotype in   56.  Chang YC, Chan YC, Chang WM, et al. Feedback regulation
               MDA-MB-468 breast tumor cells. Int J Oncol. 2010;37:615-622.
                                                                  of ALDOA activates the HIF-1α/MMP9 axis to promote
               doi: 10.3892/ijo_00000710                          lung cancer progression. Cancer Lett. 2017;403:28-36.
            46.  Zhang Y, Li Q, Huang Z, et al. Targeting glucose metabolism      doi: 10.1016/j.canlet.2017.06.001
               enzymes in cancer treatment: Current and emerging   57.  Cui Y, Liu H, Wang Z, et al. Fructose promotes angiogenesis
               strategies. Cancers (Basel). 2022;14:4568.
                                                                  by improving vascular endothelial cell function and
               doi: 10.3390/cancers14194568                       upregulating VEGF expression in cancer cells.  J  Exp Clin
                                                                  Cancer Res. 2023;42:184.
            47.  Gillet L, Roger S, Besson P,  et al. Voltage-gated sodium
               channel activity promotes  cysteine  cathepsin-dependent      doi: 10.1186/s13046-023-02765-3
               invasiveness and colony growth of human cancer cells. J Biol   58.  Yoeli-Lerner M, Toker A. Akt/PKB signaling in cancer:
               Chem. 2009;284:8680-8690.
                                                                  A  function  in  cell  motility  and invasion.  Cell  Cycle.
               doi: 10.1074/jbc.M806891200                        2006;5:603-605.
            48.  Brisson  L, Driffort V, Benoist L,  et al. Na(V)1.5 Na+      doi: 10.4161/cc.5.6.2561
               channels allosterically regulate the NHE-1 exchanger and   59.  Cheung M, Testa JR. Diverse mechanisms of AKT pathway
               promote the activity of breast cancer cell invadopodia. J Cell
               Sci. 2013;12:4835-4842.                            activation in human malignancy. Curr Cancer Drug Targets.
                                                                  2013;13:234-244.
               doi: 10.1074/jbc.M806891200
                                                                  doi: 10.2174/1568009611313030002
            49.  Busco G, Cardone RA, Greco MR, et al. NHE1 promotes   60.  Fang JH, Chen JY, Zheng JL, et al. Fructose metabolism in
               invadopodial ECM proteolysis through acidification of the   tumor endothelial cells promotes angiogenesis by activating
               peri-invadopodial space. FASEB J. 2010;24:3903-3915.
                                                                  AMPK signaling and mitochondrial respiration. Cancer Res.
               doi: 10.1096/fj.09-149518                          2023;83(8):1249-1263.
            50.  Magalhaes MAO, Larson DR, Mader CC, et al. Cortactin      doi: 10.1158/0008-5472.CAN-22-1844
               phosphorylation regulates cell invasion through a
               pH-dependent pathway. J Cell Biol. 2011;195:903-920.  61.  Peng CF, Yang P, Zhang DS,  et al. KHK-A promotes
                                                                  fructose-dependent colorectal cancer liver metastasis by
               doi: 10.1083/jcb.201103045                         facilitating the phosphorylation and translocation of PKM2.
            51.  Debreova M, Csaderova L, Burikova M, et al. CAIX regulates   Acta Pharm Sin B. 2024;14:2959-2976.
               invadopodia formation through both a pH-dependent      doi: 10.1016/j.apsb.2024.04.024
               mechanism and interplay with actin regulatory proteins. Int   62.  Gao W, Li N, Li Z, Xu J, Su C. Ketohexokinase is involved
               J Mol Sci. 2019;20:2745.
                                                                  in fructose utilization and promotes tumor progression in
               doi: 10.3390/ijms20112745                          glioma. Biochem Biophys Res Commun. 2018;503:1298-1306.
            52.  Bundalo M, Zivkovic M, Culafic T, Stojiljkovic M,      doi: 10.1016/j.bbrc.2018.07.040
               Koricanac  G, Stankovic A. Oestradiol treatment counteracts
               the effect of fructose-rich diet on matrix metalloproteinase   63.  Groenendyk J, Stoletov K, Paskevicius T, et al. Loss of the
               9 expression and NFκB activation.  Folia Biol  (Praha).   fructose transporter SLC2A5 inhibits cancer cell migration.
                                                                  Front Cell Dev Biol. 2022;10:896297.
               2015;61:233-240.
                                                                  doi: 10.3389/fcell.2022.896297
            53.  LiK, Ying M, Feng D, et al. Fructose-1,6-bisphosphatase is a
               novel regulator of Wnt/β-Catenin pathway in breast cancer.   64.  Yang  Y,  Pu  J,  Yang  Y.  Glycolysis  and  chemoresistance  in
               Biomed Pharmacother. 2016;84:1144-1149.            acute myeloid leukemia. Heliyon. 2024;10:e35721.
               doi: 10.1016/j.biopha.2016.10.050                  doi: 10.1016/j.heliyon.2024.e35721
            54.  Xu X, Zhang M, Xu F, Jiang S. Wnt signaling in breast cancer:   65.  Ughachukwu P, Unekwe P. Efflux pump-mediated resistance
               Biological mechanisms, challenges and opportunities. Mol   in chemotherapy. Ann Med Health Sci Res. 2012;2:191-198.
               Cancer. 2020;19:165.
                                                                  doi: 10.4103/2141-9248.105671
               doi: 10.1186/s12943-020-01276-5
                                                               66.  Lopes-Rodrigues V, Di Luca A, Mleczko J, et al. Identification
            55.  Hsieh  CL, Liu  CM, Chen  HA,  et al. Reactive  oxygen   of the metabolic alterations associated with the multidrug
               species-mediated switching expression of MMP-3 in   resistant phenotype in cancer and their intercellular transfer
               stromal fibroblasts and cancer cells during prostate cancer   mediated by extracellular vesicles. Sci Rep. 2017;7:44541.


            Volume 3 Issue 4 (2024)                         12                              doi: 10.36922/gpd.4171
   28   29   30   31   32   33   34   35   36   37   38