Page 54 - GTM-1-1
P. 54
Global Translational Medicine Bioinformatics analysis of dilated cardiomyopathy
wide experimental datasets. Nucleic Acids Res, 47: D607– One, 11: e0168486.
D613.
https://doi.org/10.1371/journal.pone.0168486
https://doi.org/10.1093/nar/gky1131
27. Greenberg B, Butler J, Felker GM, et al., 2016, Calcium
17. Zhou G, Soufan O, Ewald J, et al., 2019, NetworkAnalyst upregulation by percutaneous administration of gene therapy
3.0: a visual analytics platform for comprehensive gene in patients with cardiac disease (CUPID 2): A randomised,
expression profiling and meta-analysis. Nucleic Acids Res, multinational, double-blind, placebo-controlled, phase 2b
47: W234–W241. trial. Lancet, 387: 1178-1186.
https://doi.org/10.1093/nar/gkz240 https://doi.org/10.1016/S0140-6736(16)00082-9
18. Li JH, Liu S, Zhou H, et al., 2014, StarBase v2.0: Decoding 28. Muchir A, Wu W, Choi JC, et al., 2012, Abnormal p38α
miRNA-ceRNA, miRNA-ncRNA and protein-RNA mitogen-activated protein kinase signaling in dilated
interaction networks from large-scale CLIP-Seq data. cardiomyopathy caused by lamin A/C gene mutation. Hum
Nucleic Acids Res, 42: D92–D97. Mol Genet, 21: 4325–4333.
https://doi.org/10.1093/nar/gkt1248 https://doi.org/10.1093/hmg/dds265
19. Kumar R, Indrayan A, 2011, Receiver operating 29. Henry SP, Takanosu M, Boyd TC, et al., 2001, Expression
characteristic (ROC) curve for medical researchers. Indian pattern and gene characterization of asporin. A newly
Pediatr, 48: 277–287. discovered member of the leucine-rich repeat protein
family. J Biol Chem, 276: 12212–12221.
https://doi.org/10.1007/s13312-011-0055-4
https://doi.org/10.1074/jbc.M011290200
20. McNally EM, Mestroni L, 2017, Dilated Cardiomyopathy:
Genetic Determinants and Mechanisms. Circ Res, 30. Li XL, Yu F, Li BY, et al., 2019, The protective effects of grape
121: 731–748. seed procyanidin B2 against asporin mediates glycated low-
density lipoprotein induced-cardiomyocyte apoptosis and
https://doi.org/10.1161/CIRCRESAHA.116.309396
fibrosis. Cell Biol Int, 44: 268-277.
21. Taylor MR, Carniel E, Mestroni L, 2006, Cardiomyopathy,
familial dilated. Orphanet J Rare Dis, 1: 27. https://doi.org/10.1002/cbin.11229
31. Zuo C, Li X, Huang J, et al., 2018, Osteoglycin attenuates
https://doi.org/10.1186/1750-1172-1-27
cardiac fibrosis by suppressing cardiac myofibroblast
22. Reichart D, Magnussen C, Zeller T, et al., 2019, Dilated proliferation and migration through antagonizing
cardiomyopathy: from epidemiologic to genetic phenotypes: lysophosphatidic acid 3/matrix metalloproteinase 2/
A translational review of current literature. J Intern Med, epidermal growth factor receptor signalling. Cardiovasc Res,
286: 362–372. 114: 703–712.
https://doi.org/10.1111/joim.12944 https://doi.org/10.1093/cvr/cvy035
23. Gerull B, Gramlich M, Atherton J, et al., 2002, Mutations 32. Deckx S, Heggermont W, Carai P, et al., 2018,
of TTN, encoding the giant muscle filament titin, cause Osteoglycin prevents the development of age-related
familial dilated cardiomyopathy. Nat Genet, 30: 201–204. diastolic dysfunction during pressure overload by
reducing cardiac fibrosis and inflammation. Matrix Biol,
https://doi.org/10.1038/ng815
66: 110–124.
24. van Berlo JH, de Voogt WG, van der Kooi AJ, et al., 2005,
Meta-analysis of clinical characteristics of 299 carriers https://doi.org/10.1016/j.matbio.2017.09.002
of LMNA gene mutations: Do lamin A/C mutations 33. Jazbutyte V, Fiedler J, Kneitz S, et al., 2013, MicroRNA-22
portend a high risk of sudden death? J Mol Med (Berl), increases senescence and activates cardiac fibroblasts in the
83: 79–83. aging heart. Age (Dordr), 35: 747–762.
https://doi.org/10.1007/s00109-004-0589-1 https://doi.org/10.1007/s11357-012-9407-9
25. Verdonschot JA, Hazebroek MR, Ware JS, et al., 2019, Role of 34. Cai R, Jiang J, 2020, LncRNA ANRIL silencing alleviates
targeted therapy in dilated cardiomyopathy: The challenging high glucose-induced inflammation, oxidative stress,
road toward a personalized approach. J Am Heart Assoc, 8: and apoptosis via upregulation of MME in podocytes.
e012514. Inflammation, 43: 2147–2155.
https://doi.org/10.1161/JAHA.119.012514 https://doi.org/10.1007/s10753-020-01282-1
26. Kaneko M, Hashikami K, Yamamoto S, et al., 2016, 35. de Bold AJ, Bruneau BG, de Bold ML, 1996, Mechanical
phospholamban ablation using CRISPR/Cas9 system and neuroendocrine regulation of the endocrine heart.
improves mortality in a murine heart failure model. PLoS Cardiovasc Res, 31: 7–18.
Volume 1 Issue 1 (2022) 14 https://doi.org/10.36922/gtm.v1i1.104

