Page 64 - GTM-1-1
P. 64
Global Translational Medicine Fusion events identified in tumor
29. Takahashi M, Ritz J, Cooper GM, 1985, Activation of a novel 40. Richards MW, O’Regan L, Roth D, et al., 2015, Microtubule
human transforming gene, ret, by DNA rearrangement. Cell, association of EML proteins and the EML4-ALK variant 3
42(2): 581–588. oncoprotein require an N-terminal trimerization domain.
https://doi.org/10.1016/0092-8674(85)90115-1 Biochem J, 467(3): 529–536.
30. Tognon C, Knezevich SR, Huntsman D, et al., 2002, https://doi.org/10.1042/bj20150039
Expression of the ETV6-NTRK3 gene fusion as a primary 41. Sampson J, Richards MW, Choi J, et al., 2021, Phase-separated
event in human secretory breast carcinoma. Cancer Cell, foci of EML4-ALK facilitate signalling and depend upon an
2(5): 367–376. active kinase conformation. EMBO Rep, 22(12): e53693.
https://doi.org/10.1016/s1535-6108(02)00180-0 https://doi.org/10.15252/embr.202153693
31. Zinszner H, Albalat R, Ron D, 1994, A novel effector domain 42. Tulpule A, Guan J, Neel DS, et al., 2021, Kinase-mediated
from the RNA-binding protein TLS or EWS is required for RAS signaling via membraneless cytoplasmic protein
oncogenic transformation by CHOP. Genes Dev, 8(21): granules. Cell, 184(10): 2649–2664.e2618.
2513–2526.
https://doi.org/10.1016/j.cell.2021.03.031
https://doi.org/10.1101/gad.8.21.2513
43. Zhang JZ, Lu TW, Stolerman LM, et al., 2020, Phase
32. Linden M, Thomsen C, Grundevik P, et al., 2019, FET separation of a PKA regulatory subunit controls camp
family fusion oncoproteins target the SWI/SNF chromatin compartmentation and oncogenic signaling. Cell, 182(6):
remodeling complex. EMBO Rep, 20(5): e45766. 1531–1544.e1515.
https://doi.org/10.15252/embr.201845766 https://doi.org/10.1016/j.cell.2020.07.043
33. Linden M, Vannas C, Osterlund T, et al., 2022, FET fusion 44. Honeyman JN, Simon EP, Robine N, et al., 2014, Detection
oncoproteins interact with BRD4 and SWI/SNF chromatin of a recurrent DNAJB1-PRKACA chimeric transcript in
remodelling complex subtypes in sarcoma. Mol Oncol, fibrolamellar hepatocellular carcinoma. Science, 343(6174):
Online ahead of print.
1010–1014.
https://doi.org/10.1002/1878-0261.13195/v2/review2
https://doi.org/10.1126/science.1249484
34. Chong S, Graham TG, Dugast-Darzacq C, et al., 2022, 45. Corpet A, Kleijwegt C, Roubille S, et al., 2020, PML nuclear
Tuning levels of low-complexity domain interactions to bodies and chromatin dynamics: catch me if you can! Nucleic
modulate endogenous oncogenic transcription. Mol Cell,
2022: 00318–5. Acids Res, 48(21): 11890–11912.
https://doi.org/10.1093/nar/gkaa828
https://doi.org/10.1016/j.molcel.2022.04.007
46. Dyck JA, Maul GG, Miller WH Jr., et al., 1994, A novel
35. Hondele M, Heinrich S, De Los Rios P, et al., 2020,
Membraneless organelles: Phasing out of equilibrium. macromolecular structure is a target of the promyelocyte-
Emerg Top Life Sci, 4(3): 331–342. retinoic acid receptor oncoprotein. Cell, 76(2): 333–343.
https://doi.org/10.1042/etls20190190 https://doi.org/10.1016/0092-8674(94)90340-9
36. Davis RB, Moosa MM, Banerjee PR, 2022, Ectopic 47. di Masi A, Cilli D, Berardinelli F, et al., 2016, PML nuclear
biomolecular phase transitions: fusion proteins in cancer body disruption impairs DNA double-strand break sensing
pathologies. Trends Cell Biol, 2022: 00077–0. and repair in APL. Cell Death Dis, 7: e2308.
https://doi.org/10.1016/j.tcb.2022.03.005 https://doi.org/10.1038/cddis.2016.115
37. Saraon P, Pathmanathan S, Snider J, et al., 2021, Receptor 48. Salesse S, Verfaillie CM, 2002, BCR/ABL: From molecular
tyrosine kinases and cancer: Oncogenic mechanisms and mechanisms of leukemia induction to treatment of chronic
therapeutic approaches. Oncogene, 40(24): 4079–4093. myelogenous leukemia. Oncogene, 21(56): 8547–8559.
https://doi.org/10.1038/s41388-021-01841-2 https://doi.org/10.1038/sj.onc.1206082
38. Fawal M, Espinos E, Jean-Jean O, et al., 2011, Looking for 49. Kashiwagi S, Fujioka Y, Kondo T, et al., 2019, Localization
the functions of RNA granules in ALK–transformed cells. of BCR-ABL to stress granules contributes to its oncogenic
Bioarchitecture, 1(2): 91–95. function. Cell Struct Funct, 44(2): 195–204.
https://doi.org/10.4161/bioa.1.2.16269 https://doi.org/10.1247/csf.19033
39. Hrustanovic G, Olivas V, Pazarentzos E, et al., 2015, RAS- 50. Tomlins SA, Rhodes DR, Perner S, et al., 2005, Recurrent
MAPK dependence underlies a rational polytherapy strategy in fusion of TMPRSS2 and ETS transcription factor genes in
EML4-ALK-positive lung cancer. Nat Med, 21(9): 1038–1047. prostate cancer. Science, 310(5748): 644–648.
https://doi.org/10.1038/nm.3930 https://doi.org/10.1126/science.1117679
Volume 1 Issue 1 (2022) 9 https://doi.org/10.36922/gtm.v1i1.54

